Impact of a Mean Current on the Internal Tide Energy Dissipation at the Critical Latitude

O. Richet LadHyX, Ecole Polytechnique, Palaiseau, France

Search for other papers by O. Richet in
Current site
Google Scholar
PubMed
Close
,
C. Muller LadHyX, Ecole Polytechnique, Palaiseau, France

Search for other papers by C. Muller in
Current site
Google Scholar
PubMed
Close
, and
J.-M. Chomaz LadHyX, Ecole Polytechnique, Palaiseau, France

Search for other papers by J.-M. Chomaz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous numerical studies of the dissipation of internal tides in idealized settings suggest the existence of a critical latitude (~29°) where dissipation is enhanced. But observations only indicate a modest enhancement at this latitude. To resolve this difference between observational and numerical results, the authors study the latitudinal dependence of internal tides’ dissipation in more realistic conditions. In particular, the ocean is not a quiescent medium; the presence of large-scale currents or mesoscale eddies can impact the propagation and dissipation of internal tides. This paper investigates the impact of a weak background mean current in numerical simulations. The authors focus on the local dissipation of high spatial mode internal waves near their generation site. The vertical profile of dissipation and its variation with latitude without the mean current are consistent with earlier studies. But adding a weak mean current has a major impact on the latitudinal distribution of dissipation. The peak at the critical latitude disappears, and the dissipation is closer to a constant, albeit with two weak peaks at ~25° and ~35° latitude. This disappearance results from the Doppler shift of the internal tides’ frequency, which hinders the nonlinear transfer of energy to small-scale secondary waves via the parametric subharmonic instability (PSI). The new two weak peaks correspond to the Doppler-shifted critical latitudes of the left- and right-propagating waves. The results are confirmed in simulations with simple sinusoidal topography. Thus, although nonlinear transfers via PSI are efficient at dissipating internal tides, the exact location of the dissipation is sensitive to large-scale oceanic conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, Paris, France.

Corresponding author: O. Richet, oceane.richet@ladhyx.polytechnique.fr

Abstract

Previous numerical studies of the dissipation of internal tides in idealized settings suggest the existence of a critical latitude (~29°) where dissipation is enhanced. But observations only indicate a modest enhancement at this latitude. To resolve this difference between observational and numerical results, the authors study the latitudinal dependence of internal tides’ dissipation in more realistic conditions. In particular, the ocean is not a quiescent medium; the presence of large-scale currents or mesoscale eddies can impact the propagation and dissipation of internal tides. This paper investigates the impact of a weak background mean current in numerical simulations. The authors focus on the local dissipation of high spatial mode internal waves near their generation site. The vertical profile of dissipation and its variation with latitude without the mean current are consistent with earlier studies. But adding a weak mean current has a major impact on the latitudinal distribution of dissipation. The peak at the critical latitude disappears, and the dissipation is closer to a constant, albeit with two weak peaks at ~25° and ~35° latitude. This disappearance results from the Doppler shift of the internal tides’ frequency, which hinders the nonlinear transfer of energy to small-scale secondary waves via the parametric subharmonic instability (PSI). The new two weak peaks correspond to the Doppler-shifted critical latitudes of the left- and right-propagating waves. The results are confirmed in simulations with simple sinusoidal topography. Thus, although nonlinear transfers via PSI are efficient at dissipating internal tides, the exact location of the dissipation is sensitive to large-scale oceanic conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, Paris, France.

Corresponding author: O. Richet, oceane.richet@ladhyx.polytechnique.fr
Save
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, doi:10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, doi:10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourget, B., T. Dauxois, S. Joubaud, and P. Odier, 2013: Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech., 723, 120, doi:10.1017/jfm.2013.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourget, B., H. Scolan, T. Dauxois, M. Le Bars, P. Odier, and S. Joubaud, 2014: Finite-size effects in parametric subharmonic instability. J. Fluid Mech., 759, 739750, doi:10.1017/jfm.2014.550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouruet-Aubertot, P., J. Sommeria, and C. Staquet, 1995: Breaking of standing internal gravity waves through two-dimensional instabilities. J. Fluid Mech., 285, 265301, doi:10.1017/S0022112095000541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016a: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, doi:10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016b: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, doi:10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, doi:10.1038/513179a.

  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, doi:10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and J. M. Klymak, 2015: Dissipation of internal wave energy generated on a critical slope. J. Phys. Oceanogr., 45, 22212238, doi:10.1175/JPO-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., 2001: Internal and interfacial tides: Beam scattering and local generation of solitary waves. J. Mar. Res., 59, 227255, doi:10.1357/002224001762882646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1989: Stochastic modeling of seafloor morphology: A parameterized Gaussian model. Geophys. Res. Lett., 16, 4548, doi:10.1029/GL016i001p00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643, doi:10.1016/j.ocemod.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazewinkel, J., and K. Winters, 2011: PSI of the internal tide on a β plane: Flux divergence and near-inertial wave propagation. J. Phys. Oceanogr., 41, 16731682, doi:10.1175/2011JPO4605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J., E. Montgomery, K. Polzin, L. S. Laurent, R. Schmitt, and J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefauve, A., C. Muller, and A. Melet, 2015: A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. Oceans, 120, 47604777, doi:10.1002/2014JC010598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, doi:10.1175/JPO-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, M. Nikurashin, and W. R. Peltier, 2015: Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr., 45, 25802597, doi:10.1175/JPO-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowe, S., 1986: Critical layers in shear flows. Annu. Rev. Fluid Mech., 18, 405432, doi:10.1146/annurev.fl.18.010186.002201.

  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impact of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, doi:10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and O. Bühler, 2009: Saturation of the internal tides and induced mixing in the abyssal ocean. J. Phys. Oceanogr., 39, 20772096, doi:10.1175/2009JPO4141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., L. C. Allison, H. L. Johnson, and D. P. Marshall, 2011: Remote forcing of the Antarctic Circumpolar Current by diapycnal mixing. Geophys. Res. Lett., 38, L08609, doi:10.1029/2011GL046849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, doi:10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. K. Vallis, and A. Adcroft, 2012: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 4851, doi:10.1038/ngeo1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. Toole, J. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, doi:10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 712726, doi:10.1175/1520-0485(1998)028<0712:LSCWLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staquet, C., and J. Sommeria, 2002: Internal gravity waves: From instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559593, doi:10.1146/annurev.fluid.34.090601.130953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., Q. Liu, X. Shang, G. Chen, and D. Wang, 2016: Poleward propagation of parametric subharmonic instability-induced inertial waves. J. Geophys. Res. Oceans, 121, 18811895, doi:10.1002/2015JC011194.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 370 121 3
PDF Downloads 259 59 3