Bulk versus Spectral Wave Parameters: Implications on Stokes Drift Estimates, Regional Wave Modeling, and HF Radars Applications

Nirnimesh Kumar Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Nirnimesh Kumar in
Current site
Google Scholar
PubMed
Close
,
Douglas L. Cahl School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina

Search for other papers by Douglas L. Cahl in
Current site
Google Scholar
PubMed
Close
,
Sean C. Crosby Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Sean C. Crosby in
Current site
Google Scholar
PubMed
Close
, and
George Voulgaris School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina

Search for other papers by George Voulgaris in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate estimates of Stokes drift are necessary to quantify Lagrangian transport and upper-ocean mixing. These can be estimated from directional wave spectra. Here, a methodology for the reconstruction of such spectra is developed using partitioned bulk wave parameters provided by global wave models. These reconstructed spectra agree well with global wave model–simulated full spectra. Regional wave model simulations with reconstructed spectra as open boundary conditions lead to more accurate estimates of bulk wave parameters in the coastal ocean. Furthermore, the reconstructed directional spectra can be used to improve high-frequency (HF) radar–derived surface Lagrangian current estimates. Stokes drift vertical profiles from complete directional spectra are more accurate, and therefore coupled ocean circulation and wave models should incorporate spectral estimates for wave–current interaction studies. Based on model simulations conducted here, it is recommended that regional wave modeling studies use partitioned rather than bulk wave parameter products from global wave simulations to reconstruct complete directional spectra for open boundary conditions. Finally, this study shows that inclusion of the peak spectral energy for each partition improves the ability to reconstruct more accurately directional spectra and surface Stokes drift. It is recommended that the global wave model hindcast/forecast include this additional bulk parameter.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Kumar, nirni@uw.edu

Abstract

Accurate estimates of Stokes drift are necessary to quantify Lagrangian transport and upper-ocean mixing. These can be estimated from directional wave spectra. Here, a methodology for the reconstruction of such spectra is developed using partitioned bulk wave parameters provided by global wave models. These reconstructed spectra agree well with global wave model–simulated full spectra. Regional wave model simulations with reconstructed spectra as open boundary conditions lead to more accurate estimates of bulk wave parameters in the coastal ocean. Furthermore, the reconstructed directional spectra can be used to improve high-frequency (HF) radar–derived surface Lagrangian current estimates. Stokes drift vertical profiles from complete directional spectra are more accurate, and therefore coupled ocean circulation and wave models should incorporate spectral estimates for wave–current interaction studies. Based on model simulations conducted here, it is recommended that regional wave modeling studies use partitioned rather than bulk wave parameter products from global wave simulations to reconstruct complete directional spectra for open boundary conditions. Finally, this study shows that inclusion of the peak spectral energy for each partition improves the ability to reconstruct more accurately directional spectra and surface Stokes drift. It is recommended that the global wave model hindcast/forecast include this additional bulk parameter.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Kumar, nirni@uw.edu
Save
  • Adams, P. N., D. L. Inman, and N. E. Graham, 2008: Southern California deep-water wave climate: Characterization and application to coastal processes. J. Coastal Res., 24, 10221035, doi:10.2112/07-0831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., N. Rascle, and K. A. Belibassakis, 2008: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20, 3560, doi:10.1016/j.ocemod.2007.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39, 28202838, doi:10.1175/2009JPO4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnard, P. L., M. van Ormondt, L. H. Erikson, J. Eshleman, C. Hapke, P. Ruggiero, P. N. Adams, and A. C. Foxgrover, 2014: Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards, 74, 10951125, doi:10.1007/s11069-014-1236-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D., and B. Weber, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part II: Interpretation and applications. J. Phys. Oceanogr., 7, 1121, doi:10.1175/1520-0485(1977)007<0011:OTNTFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennis, A.-C., F. Ardhuin, and F. Dumas, 2011: On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Modell., 40, 260272, doi:10.1016/j.ocemod.2011.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., and Ø. Sætra, 2001: Real time assimilation of HF radar currents into a coastal ocean model. J. Mar. Syst., 28, 161182, doi:10.1016/S0924-7963(01)00002-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., J.-R. Bidlot, and P. A. Janssen, 2016: A Stokes drift approximation based on the Phillips spectrum. Ocean Modell., 100, 4956, doi:10.1016/j.ocemod.2016.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broche, P., J. Demaistre, and P. Forget, 1983: Mesure par radar décamétrique cohérent des courants superficiels engendrés par le vent. Oceanol. Acta, 6, 4353.

    • Search Google Scholar
    • Export Citation
  • Broström, G., A. Carrasco, L. Hole, S. Dick, F. Janssen, J. Mattsson, and S. Berger, 2011: Usefulness of high resolution coastal models for operational oil spill forecast: The “Full City” accident. Ocean Sci., 7, 805–820, doi:10.5194/os-7-805-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunney, C., A. Saulter, and T. Palmer, 2014: Reconstruction of complex 2D wave spectra for rapid deployment of nearshore wave models. From Sea to Shore—Meeting the Challenges of the Sea (Coasts, Marine Structures and Breakwaters 2013), W. Allsop and K. Burgess, Eds., 1050–1059.

  • Cahl, D. L., and G. Voulgaris, 2016: HF radar Lagrangian trajectory calculations accounting for Stokes drift and the nonlinear Bragg wave phase speed correction term. Extended Abstracts, 2016 Ocean Sciences Meeting, New Orleans, LA, ASLO, eC44B-1247. [Available online at https://agu.confex.com/agu/os16/preliminaryview.cgi/Paper92023.html.]

  • Chawla, A., D. M. Spindler, and H. L. Tolman, 2013: Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Modell., 70, 189206, doi:10.1016/j.ocemod.2012.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681682, doi:10.1038/175681a0.

  • Crosby, S. C., W. C. O’Reilly, and R. T. Guza, 2016: Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions. J. Atmos. Oceanic Technol., 33, 16731690, doi:10.1175/JTECH-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, doi:10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28, 495512, doi:10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., and C. Grosch, 2014: Turbulence process domination under the combined forcings of wind stress, the Langmuir vortex force, and surface cooling. J. Phys. Oceanogr., 44, 4467, doi:10.1175/JPO-D-13-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18, 277293, doi:10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and R. E. Jensen, 2004: Wave system diagnostics for numerical wave models. Proc. Eighth Int. Workshop on Wave Hindcasting and Forecasting, North Shore, Oahu, HI, U.S. Army Corps of Engineers, Coastal and Hydraulics Laboratory, E3. [Available online at http://www.waveworkshop.org/8thWaves/Papers/E3.pdf.]

  • Harlan, J., E. Terrill, L. Hazard, C. Keen, D. Barrick, C. Whelan, S. Howden, and J. Kohut, 2010: The integrated ocean observing system high-frequency radar network: Status and local, regional, and national applications. Mar. Technol. Soc. J., 44, 122132, doi:10.4031/MTSJ.44.6.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., 8A (Suppl.), 95 pp.

  • Herbers, T., S. Elgar, and R. T. Guza, 1999: Directional spreading of waves in the nearshore. J. Geophys. Res., 104, 76837693, doi:10.1029/1998JC900092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, J., S. Elgar, and B. Raubenheimer, 2016: Observations and model simulations of wave-current interaction on the inner shelf. J. Geophys. Res. Oceans, 121, 198208, doi:10.1002/2015JC010788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, doi:10.1029/JC074i028p06991.

  • Kuik, A. J., G. P. V. Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, doi:10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., G. Voulgaris, J. C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell., 47, 6595, doi:10.1016/j.ocemod.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, doi:10.1175/2008JPO3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. R. Merz, 2014: Assessment of CODAR SeaSonde and WERA HF radars in mapping surface currents on the west Florida shelf. J. Atmos. Oceanic Technol., 31, 13631382, doi:10.1175/JTECH-D-13-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112, C05001, doi:10.1029/2006JC003835.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. Cartwright, and N. Smith, 1961: Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra: Proceedings of a Conference, Prentice-Hall, 111–132.

  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda, and K. Rikiishi, 1975: Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr., 5, 750760, doi:10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moghimi, S., K. Klingbeil, U. Gräwe, and H. Burchard, 2013: A direct comparison of a depth-dependent radiation stress formulation and a vortex force formulation within a three-dimensional coastal ocean model. Ocean Modell., 70, 132144, doi:10.1016/j.ocemod.2012.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, J., and O. E. Delgado-González, 1990: Pitfalls in the estimation of wind wave directional spectra by variational principles. Appl. Ocean Res., 12, 180187, doi:10.1016/S0141-1187(05)80025-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., J. C. Warner, B. Armstrong, J. B. Zambon, and R. He, 2012: Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Model., 43–44, 112137, doi:10.1016/j.ocemod.2011.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, W., and R. T. Guza, 1991: Comparison of spectral refraction and refraction-diffraction wave models. J. Waterw. Port Coastal Ocean Eng., 117, 199215, doi:10.1061/(ASCE)0733-950X(1991)117:3(199).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, W., and R. T. Guza, 1993: A comparison of two spectral wave models in the Southern California Bight. Coastal Eng., 19, 263282, doi:10.1016/0378-3839(93)90032-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, W., C. B. Olfe, J. Thomas, R. Seymour, and R. Guza, 2016: The California coastal wave monitoring and prediction system. Coastal Eng., 116, 118132, doi:10.1016/j.coastaleng.2016.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and I. Shulman, 2004: HF radar data assimilation in the Monterey Bay area. J. Geophys. Res., 109, C07S09, doi:10.1029/2003JC001949.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, doi:10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawka, S., D. Inman, and R. Guza, 1984: Island sheltering of surface gravity waves: Model and experiment. Cont. Shelf Res., 3, 3553, doi:10.1016/0278-4343(84)90042-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., Jr., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, doi:10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2013: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell., 70, 174188, doi:10.1016/j.ocemod.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, and E. A. Terray, 2006: Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res., 111, C03016, doi:10.1029/2005JC003004.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croizé-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell., 25, 154171, doi:10.1016/j.ocemod.2008.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ris, R., L. Holthuijsen, and N. Booij, 1999: A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res., 104, 76677681, doi:10.1029/1998JC900123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., J. M. Kaihatu, L. Hsu, R. E. Jensen, J. D. Dykes, and K. T. Holland, 2007: Forecasting and hindcasting waves with the swan model in the Southern California Bight. Coastal Eng., 54, 115, doi:10.1016/j.coastaleng.2006.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röhrs, J., K. H. Christensen, F. Vikebø, S. Sundby, Ø. Saetra, and G. Broström, 2014: Wave-induced transport and vertical mixing of pelagic eggs and larvae. Limnol. Oceanogr., 59, 12131227, doi:10.4319/lo.2014.59.4.1213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. R. Kirincich, R. Limeburner, and I. A. Udovydchenkov, 2014: Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Oceanic Technol., 31, 945966, doi:10.1175/JTECH-D-13-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441473.

  • Tejada-Martínez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech., 576, 63108, doi:10.1017/S0022112006004587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III TM version 3.14. Environmental Modeling Center, Marine Modeling and Analysis Branch Contribution 276, 220 pp.

  • Tolman, H. L., 2014: User manual and system documentation of WAVEWATCH III version 4.18. WAVEWATCH III Development Group, Environmental Modeling Center, Marine Modeling and Analysis Branch Contribution 316, 311 pp.

  • Tracy, B., E. Devaliere, J. Hanson, T. Nicolini, and H. Tolman, 2007: Wind sea and swell delineation for numerical wave modeling. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting Coastal Hazard Symp., North Shore, Oahu, HI, U.S. Army Engineer Research and Development Center, P12. [Available online at http://www.waveworkshop.org/10thWaves/ProgramFrameset.htm.]

  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, doi:10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., J. O’Donnell, J. Kohut, T. Fake, and A. Allen, 2006: Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties. J. Geophys. Res., 111, C12005, doi:10.1029/2006JC003715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L., and P. Soille, 1991: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13, 583598, doi:10.1109/34.87344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. W., and P. A. Hwang, 2001: Evolution of the bimodal directional distribution of ocean waves. J. Phys. Oceanogr., 31, 12001221, doi:10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, doi:10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2015: Impacts of wave spreading and multidirectional waves on estimating stokes drift. Ocean Modell., 96, 4964, doi:10.1016/j.ocemod.2014.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 975 224 12
PDF Downloads 626 150 15