Topographic and Mixed Layer Submesoscale Currents in the Near-Surface Southwestern Tropical Pacific

Kaushik Srinivasan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kaushik Srinivasan in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
Lionel Renault Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
,
Hristina G. Hristova Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Hristina G. Hristova in
Current site
Google Scholar
PubMed
Close
,
Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
, and
William S. Kessler NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by William S. Kessler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distribution and strength of submesoscale (SM) surface layer fronts and filaments generated through mixed layer baroclinic energy conversion and submesoscale coherent vortices (SCVs) generated by topographic drag are analyzed in numerical simulations of the near-surface southwestern Pacific, north of 16°S. In the Coral Sea a strong seasonal cycle in the surface heat flux leads to a winter SM “soup” consisting of baroclinic mixed layer eddies (MLEs), fronts, and filaments similar to those seen in other regions farther away from the equator. However, a strong wind stress seasonal cycle, largely in sync with the surface heat flux cycle, is also a source of SM processes. SM restratification fluxes show distinctive signatures corresponding to both surface cooling and wind stress. The winter peak in SM activity in the Coral Sea is not in phase with the summer dominance of the mesoscale eddy kinetic energy in the region, implying that local surface layer forcing effects are more important for SM generation than the nonlocal eddy deformation field. In the topographically complex Solomon and Bismarck Seas, a combination of equatorial proximity and boundary drag generates SCVs with large-vorticity Rossby numbers (Ro ~ 10). River outflows in the Bismarck and Solomon Seas make a contribution to SM generation, although they are considerably weaker than the topographic effects. Mean to eddy kinetic energy conversions implicate barotropic instability in SM topographic wakes, with the strongest values seen north of the Vitiaz Strait along the coast of Papua New Guinea.

NOAA/Pacific Marine Environmental Laboratory Contribution Number 4569 and Joint Institute for Marine and Atmospheric Research Contribution Number 16-394.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaushik Srinivasan, kaushiks@atmos.ucla.edu

Abstract

The distribution and strength of submesoscale (SM) surface layer fronts and filaments generated through mixed layer baroclinic energy conversion and submesoscale coherent vortices (SCVs) generated by topographic drag are analyzed in numerical simulations of the near-surface southwestern Pacific, north of 16°S. In the Coral Sea a strong seasonal cycle in the surface heat flux leads to a winter SM “soup” consisting of baroclinic mixed layer eddies (MLEs), fronts, and filaments similar to those seen in other regions farther away from the equator. However, a strong wind stress seasonal cycle, largely in sync with the surface heat flux cycle, is also a source of SM processes. SM restratification fluxes show distinctive signatures corresponding to both surface cooling and wind stress. The winter peak in SM activity in the Coral Sea is not in phase with the summer dominance of the mesoscale eddy kinetic energy in the region, implying that local surface layer forcing effects are more important for SM generation than the nonlocal eddy deformation field. In the topographically complex Solomon and Bismarck Seas, a combination of equatorial proximity and boundary drag generates SCVs with large-vorticity Rossby numbers (Ro ~ 10). River outflows in the Bismarck and Solomon Seas make a contribution to SM generation, although they are considerably weaker than the topographic effects. Mean to eddy kinetic energy conversions implicate barotropic instability in SM topographic wakes, with the strongest values seen north of the Vitiaz Strait along the coast of Papua New Guinea.

NOAA/Pacific Marine Environmental Laboratory Contribution Number 4569 and Joint Institute for Marine and Atmospheric Research Contribution Number 16-394.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaushik Srinivasan, kaushiks@atmos.ucla.edu
Save
  • Bachman, S. D., and J. R. Taylor, 2016: Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. J. Phys. Oceanogr., 46, 919935, doi:10.1175/JPO-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. Naveira-Garabato, and A. G. Nurser, 2015: The seasonal cycle of submesoscale flows. Ocean Modell., 92, 6984, doi:10.1016/j.ocemod.2015.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., and P. Klein, 2016: Quasigeostrophic diagnosis of mixed layer dynamics embedded in a mesoscale turbulent field. J. Phys. Oceanogr., 46, 275287, doi:10.1175/JPO-D-14-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colas, F., X. Capet, J. C. McWilliams, and Z. Li, 2013: Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern boundary currents. J. Phys. Oceanogr., 43, 10731095, doi:10.1175/JPO-D-11-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvelard, X., P. Marchesiello, L. Gourdeau, and J. Lefèvre, 2008: Barotropic zonal jets induced by islands in the southwest Pacific. J. Phys. Oceanogr., 38, 21852204, doi:10.1175/2008JPO3903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvelard, X., F. Dumas, V. Garnier, A. Ponte, C. Talandier, and A. Treguier, 2015: Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence. Ocean Modell., 96, 243253, doi:10.1016/j.ocemod.2015.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 23472365, doi:10.1175/JCLI3739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., J. McWilliams, and M. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, doi:10.1175/JPO-D-13-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djath, B., J. Verron, A. Melet, L. Gourdeau, B. Barnier, and J.-M. Molines, 2014: Multiscale dynamical analysis of a high-resolution numerical model simulation of the Solomon Sea circulation. J. Geophys. Res. Oceans, 119, 62866304, doi:10.1002/2013JC009695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., and J. C. McWilliams, 2007: A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res., 27, 12331248, doi:10.1016/j.csr.2007.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourdeau, L., J. Verron, A. Melet, W. Kessler, F. Marin, and B. Djath, 2014: Exploring the mesoscale activity in the Solomon Sea: A complementary approach with a numerical model and altimetric data. J. Geophys. Res. Oceans, 119, 22902311, doi:10.1002/2013JC009614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, doi:10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697, doi:10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hristova, H. G., W. S. Kessler, J. C. McWilliams, and M. J. Molemaker, 2014: Mesoscale variability and its seasonality in the Solomon and Coral Seas. J. Geophys. Res. Oceans, 119, 46694687, doi:10.1002/2013JC009741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., and W. Dewar, 2015: The energetics of centrifugal instability. J. Phys. Oceanogr., 45, 15541573, doi:10.1175/JPO-D-14-0064.1.

  • Kessler, W. S., and S. Cravatte, 2013: ENSO and short-term variability of the South Equatorial Current entering the Coral Sea. J. Phys. Oceanogr., 43, 956969, doi:10.1175/JPO-D-12-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, doi:10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, doi:10.1016/j.ocemod.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., M. J. Molemaker, A. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, doi:10.1029/RG023i002p00165.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, doi:10.1098/rspa.2016.0117.

  • McWilliams, J. C., and E. Huckle, 2006: Ekman layer rectification. J. Phys. Oceanogr., 36, 16461659, doi:10.1175/JPO2912.1.

  • McWilliams, J. C., E. Huckle, and A. F. Shchepetkin, 2009: Effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, doi:10.1175/2009JPO4130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, doi:10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., L. Gourdeau, and J. Verron, 2010: Variability in Solomon Sea circulation derived from altimeter sea level data. Ocean Dyn., 60, 883900, doi:10.1007/s10236-010-0302-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, doi:10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, doi:10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, doi:10.1029/2005JC002964.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and W. S. Kessler, 2009: Source of the 70-day mesoscale eddy variability in the Coral Sea and the North Fiji Basin. J. Phys. Oceanogr., 39, 404420, doi:10.1175/2008JPO3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 277, pp. 3595–3624. J. Comput. Phys., 228, 89859000, doi:10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, doi:10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veneziani, M., A. Griffa, Z. Garraffo, and J. A. Mensa, 2014: Barrier layers in the tropical South Atlantic: Mean dynamics and submesoscale effects. J. Phys. Oceanogr., 44, 265288, doi:10.1175/JPO-D-13-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 646 185 16
PDF Downloads 442 150 14