Mean Subsurface Upwelling Induced by Intraseasonal Variability over the Equatorial Indian Ocean

Tomomichi Ogata Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

Search for other papers by Tomomichi Ogata in
Current site
Google Scholar
PubMed
Close
,
Motoki Nagura Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Motoki Nagura in
Current site
Google Scholar
PubMed
Close
, and
Yukio Masumoto Graduate School of Science, University of Tokyo, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Yukio Masumoto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A possible formation mechanism of mean subsurface upwelling along the equator in the Indian Ocean is investigated using a series of hierarchical ocean general circulation model (OGCM) integrations and analytical considerations. In an eddy-resolving OGCM with realistic forcing, mean vertical velocity in the tropical Indian Ocean shows rather strong upwelling, with its maximum on the equator in the subsurface layer below the thermocline. Heat budget analysis exhibits that horizontal and vertical heat advection by deviations (i.e., due to deviations of velocity and temperature from the mean) balances with vertical advection caused by mean equatorial upwelling. Horizontal heat advection is mostly associated with intraseasonal variability with periods of 3–91 days, while contributions from longer periods (>91 days) are small. Sensitivity experiments with a coarse-resolution OGCM further demonstrate that such mean equatorial upwelling cannot be reproduced by seasonal forcing only. Adding the intraseasonal wind forcing, especially meridional wind variability with a period of 15 days, generates significant mean subsurface upwelling on the equator. Further experiments with idealized settings confirm the importance of intraseasonal mixed Rossby–gravity (MRG) waves to generate mean upwelling, which appears along the energy “beam” of the MRG wave. An analytical solution of the MRG waves indicates that wave-induced temperature advection caused by the MRG waves with upward (downward) phase propagation results in warming (cooling) on the equator. This wave-induced warming (cooling) is shown to balance with the mean equatorial upwelling (downwelling), which is consistent with simulated characteristics in the OGCM experiments.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomomichi Ogata, tomomichi.ogata@gmail.com

Abstract

A possible formation mechanism of mean subsurface upwelling along the equator in the Indian Ocean is investigated using a series of hierarchical ocean general circulation model (OGCM) integrations and analytical considerations. In an eddy-resolving OGCM with realistic forcing, mean vertical velocity in the tropical Indian Ocean shows rather strong upwelling, with its maximum on the equator in the subsurface layer below the thermocline. Heat budget analysis exhibits that horizontal and vertical heat advection by deviations (i.e., due to deviations of velocity and temperature from the mean) balances with vertical advection caused by mean equatorial upwelling. Horizontal heat advection is mostly associated with intraseasonal variability with periods of 3–91 days, while contributions from longer periods (>91 days) are small. Sensitivity experiments with a coarse-resolution OGCM further demonstrate that such mean equatorial upwelling cannot be reproduced by seasonal forcing only. Adding the intraseasonal wind forcing, especially meridional wind variability with a period of 15 days, generates significant mean subsurface upwelling on the equator. Further experiments with idealized settings confirm the importance of intraseasonal mixed Rossby–gravity (MRG) waves to generate mean upwelling, which appears along the energy “beam” of the MRG wave. An analytical solution of the MRG waves indicates that wave-induced temperature advection caused by the MRG waves with upward (downward) phase propagation results in warming (cooling) on the equator. This wave-induced warming (cooling) is shown to balance with the mean equatorial upwelling (downwelling), which is consistent with simulated characteristics in the OGCM experiments.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomomichi Ogata, tomomichi.ogata@gmail.com
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced-dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142, doi:10.1175/2010JPO4356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Shu, Y. Li, D. Wang, and Q. Xie, 2016: The role of equatorial undercurrent in sustaining the eastern Indian Ocean upwelling. Geophys. Res. Lett., 43, 64446451, doi:10.1002/2016GL069433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., R. J. Hu, A. Schiller, and R. Fiedler, 2007: Explorations of the annual mean heat budget of the tropical Indian Ocean. Part I: Studies with an idealized model. J. Climate, 20, 32103228, doi:10.1175/JCLI4157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, doi:10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., D. M. Lawrence, and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow. Geophys. Res. Lett., 28, 42154218, doi:10.1029/2001GL013701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2008: Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res., 113, C04035, doi:10.1029/2007JC004363.

    • Search Google Scholar
    • Export Citation
  • Hu, R. J., and J. S. Godfrey, 2007: Explorations of the annual mean heat budget of the tropical Indian Ocean. Part II: Studies with a simplified ocean general circulation model. J. Climate, 20, 32293248, doi:10.1175/JCLI4158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, doi:10.1029/2000RG000084.

  • Kindle, J. C., and J. D. Thompson, 1989: The 26-and 50-day oscillations in the western Indian Ocean: Model results. J. Geophys. Res., 94, 47214736, doi:10.1029/JC094iC04p04721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., 2004: Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophys. Res. Lett., 31, L18305, doi:10.1029/2004GL020884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1997: Inferring meridional mass and heat transports of the Indian Ocean by fitting a general circulation model to climatological data. J. Geophys. Res., 102, 10 58510 602, doi:10.1029/97JC00464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., and P. J. Webster, 2000: A coupled ocean–atmosphere system of SST modulation for the Indian Ocean. J. Climate, 13, 33423360, doi:10.1175/1520-0442(2000)013<3342:ACOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., 2010: Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework—A review of OFES activities. Ocean Dyn., 60, 633652, doi:10.1007/s10236-010-0297-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, doi:10.1016/S0967-0645(03)00044-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 827846, doi:10.1175/JPO2897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, and T. Yamagata, 2011: On the growth and decay of the subtropical dipole mode in the South Atlantic. J. Climate, 24, 55385554, doi:10.1175/2011JCLI4010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2014: Zonal momentum budget along the equator in the Indian Ocean from a high‐resolution ocean general circulation model. J. Geophys. Res. Oceans, 119, 44444461, doi:10.1002/2014JC009895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., Y. Masumoto, and T. Horii, 2014: Meridional heat advection due to mixed Rossby gravity waves in the equatorial Indian Ocean. J. Phys. Oceanogr., 44, 343358, doi:10.1175/JPO-D-13-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and Y. Masumoto, 2011: Interannual modulation and its dynamics of the mesoscale eddy variability in the southeastern tropical Indian Ocean. J. Geophys. Res., 116, C05005, doi:10.1029/2010JC006490.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., and S. P. Xie, 2011: Semiannual cycle in zonal wind over the equatorial Indian Ocean. J. Climate, 24, 64716485, doi:10.1175/2011JCLI4243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., H. Sasaki, V. S. N. Murty, M. S. S. Sarma, and Y. Masumoto, 2008: Intraseasonal meridional current variability in the eastern equatorial Indian Ocean. J. Geophys. Res., 113, C07037, doi:10.1029/2007JC004331.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual. GFDL Ocean Group Tech. Rep 4, NOAA/GFDL, 680 pp.

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18, 16011626, doi:10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, doi:10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, and B. N. Goswami, 2001: Origin of intraseasonal variability of circulation in the tropical central Indian Ocean. Geophys. Res. Lett., 28, 12671270, doi:10.1029/2000GL012251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, V. S. N. Murty, and V. Fernando, 2004: A biweekly mode in the equatorial Indian Ocean. J. Geophys. Res., 109, C10003, doi:10.1029/2004JC002329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30, 15321561, doi:10.1175/1520-0485(2000)030<1532:NSOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., T. S. Durland, and J. N. Moum, 2015: Energy and heat fluxes due to vertically propagating Yanai waves observed in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 120, 115, doi:10.1002/2014JC010152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wacongne, S., and R. Pacanowski, 1996: Seasonal heat transport in a primitive equations model of the tropical Indian Ocean. J. Phys. Oceanogr., 26, 26662699, doi:10.1175/1520-0485(1996)026<2666:SHTIAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21, 37403754, doi:10.1175/2008JCLI1957.1.

  • Yoshida, K., 1959: A theory of the Cromwell Current and equatorial upwelling. J. Oceanogr. Soc. Japan, 15, 154170.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 51 4
PDF Downloads 142 31 3