Turbulent Large-Eddy Momentum Flux Divergence during High-Wind Events

H. W. Wijesekera Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by H. W. Wijesekera in
Current site
Google Scholar
PubMed
Close
,
D. W. Wang Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by D. W. Wang in
Current site
Google Scholar
PubMed
Close
,
E. Jarosz Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by E. Jarosz in
Current site
Google Scholar
PubMed
Close
,
W. J. Teague Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by W. J. Teague in
Current site
Google Scholar
PubMed
Close
,
W. S. Pegau Oil Spill Recovery Institute, Cordova, Alaska

Search for other papers by W. S. Pegau in
Current site
Google Scholar
PubMed
Close
, and
J. N. Moum Oregon State University, Corvallis, Oregon

Search for other papers by J. N. Moum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Momentum transport by energy-containing turbulent eddies in the oceanic mixed layer were investigated during high-wind events in the northern Gulf of Alaska off Kayak Island. Sixteen high-wind events with magnitudes ranging from 7 to 22 m s−1 were examined. Winds from the southeast prevailed from one to several days with significant wave heights of 5–9 m and turbulent Langmuir numbers of about 0.2–0.4. Surface buoyancy forcing was much weaker than the wind stress forcing. The water column was well mixed to the bottom depth of about 73 m. Spectral analyses indicate that a major part of the turbulent momentum flux was concentrated on 10–30-min time scales. The ratio of horizontal scale to mixed layer depth was from 2 to 8. Turbulent shear stresses in the mixed layer were horizontally asymmetric. The downwind turbulent stress at 10–20 m below the surface was approximately 40% of the averaged wind stress and was reduced to 5%–10% of the wind stress near the bottom. Turbulent kinetic energy in the crosswind direction was 30% larger than in the downwind direction and an order of magnitude larger than the vertical component. The averaged eddy viscosity between 10- and 30-m depth was ~0.1 m2 s−1, decreased with depth rapidly below 50 m, and was ~5 × 10−3 m2 s−1 at 5 m above the bottom. The divergence of turbulent shear stress accelerated the flow during the early stages of wind events before Coriolis and pressure gradient forces became important.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hemantha W. Wijesekera, hemantha.wijesekera@nrlssc.navy.mil

Abstract

Momentum transport by energy-containing turbulent eddies in the oceanic mixed layer were investigated during high-wind events in the northern Gulf of Alaska off Kayak Island. Sixteen high-wind events with magnitudes ranging from 7 to 22 m s−1 were examined. Winds from the southeast prevailed from one to several days with significant wave heights of 5–9 m and turbulent Langmuir numbers of about 0.2–0.4. Surface buoyancy forcing was much weaker than the wind stress forcing. The water column was well mixed to the bottom depth of about 73 m. Spectral analyses indicate that a major part of the turbulent momentum flux was concentrated on 10–30-min time scales. The ratio of horizontal scale to mixed layer depth was from 2 to 8. Turbulent shear stresses in the mixed layer were horizontally asymmetric. The downwind turbulent stress at 10–20 m below the surface was approximately 40% of the averaged wind stress and was reduced to 5%–10% of the wind stress near the bottom. Turbulent kinetic energy in the crosswind direction was 30% larger than in the downwind direction and an order of magnitude larger than the vertical component. The averaged eddy viscosity between 10- and 30-m depth was ~0.1 m2 s−1, decreased with depth rapidly below 50 m, and was ~5 × 10−3 m2 s−1 at 5 m above the bottom. The divergence of turbulent shear stress accelerated the flow during the early stages of wind events before Coriolis and pressure gradient forces became important.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hemantha W. Wijesekera, hemantha.wijesekera@nrlssc.navy.mil
Save
  • Antonia, R. A., A. J. Chambers, C. A. Friehe, and C. W. Van Atta, 1979: Temperature ramps in the atmospheric surface layer. J. Atmos. Sci., 36, 99108, doi:10.1175/1520-0469(1979)036<0099:TRITAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BioSonics, 2004: DT4 data file format specification. BioSonics Software and Engineering Library Rep. BS&E-2004-07-0009-1.3, 33 pp.

  • Brainerd, K. E., and M. C. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42, 15211543, doi:10.1016/0967-0637(95)00068-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, J. M., 1987: Similarity structure in the convective boundary layer of a lake. Nature, 330, 742745, doi:10.1038/330742a0.

  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, doi:10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., J. G. Richman, C. G. Hansen, and M. D. Pearson, 1981: Near-surface turbulence measurements in a lake. Nature, 290, 390392, doi:10.1038/290390a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and J. R. Wells, 2007: Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech., 576, 2761, doi:10.1017/S0022112006004575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and C. E. Grosch, 2014: Turbulent processes domination under the combined forcing of wind stress, the Langmuir vortex force, and surface cooling. J. Phys. Oceanogr., 44, 4467, doi:10.1175/JPO-D-13-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., A. E. Tejada-Martinez, and C. E. Grosch, 2008: Measuring turbulent large-eddy structure with an ADCP. 1. Vertical velocity variance. J. Mar. Res., 66, 157189, doi:10.1357/002224008785837149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, R. E., and G. W. Hill, 1980: Near-shore current pattern off south Texas: An interpretation from aerial photographs. Remote Sens. Environ., 10, 115134, doi:10.1016/0034-4257(80)90010-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. Wang, H. Wijesekera, W. S. Pegau, and J. N. Moum, 2017: Flow variability within the Alaska coastal current in winter. J. Geophys. Res. Oceans, 122, doi:10.1002/2016JC012102, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2011: The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean. J. Geophys. Res., 116, C08005, doi:10.1029/2011JC006971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, doi:10.1126/science.87.2250.119.

  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, doi:10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Sykllingstad, 2005: A regime diagram for classifying turbulent eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., G. S. Young, B. A. Colle, and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437453, doi:10.1175/MWR3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, doi:10.1029/JC094iC05p06273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley-Interscience, 239 pp.

  • Marmorino, G. O., G. B. Smith, and G. J. Lindemann, 2005: Infrared imagery of large-aspect-ratio Langmuir circulation. Cont. Shelf Res., 25, 16, doi:10.1016/j.csr.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 2015: Ocean speed and turbulence measurements using pitot-static tubes on moorings. Atmos. Oceanic Technol., 32, 14001413, doi:10.1175/JTECH-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2008: Seafloor pressure measurements of nonlinear internal waves. J. Phys. Oceanogr., 38, 481491, doi:10.1175/2007JPO3736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, doi:10.1175/2008JTECHO617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. R. Caldwell, and C. A. Paulson, 1989: Mixing in the equatorial surface layer and thermocline. J. Geophys. Res., 94, 20052021, doi:10.1029/JC094iC02p02005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. B., and B. A. Colle, 2009: Three-dimensional idealized simulations of barrier jets along the southeast coast of Alaska. Mon. Wea. Rev., 137, 391413, doi:10.1175/2008MWR2480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, L. J., J. C. Wyngaard, S. Khanna, and J. G. Brasseur, 1996: Spectra in the unstable surface layer. J. Atmos. Sci., 53, 4961, doi:10.1175/1520-0469(1996)053<0049:SITUSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, H., F. De Strobel, and L. Gauldesi, L., 2000: The Barny Sentinel trawl-resistant ADCP bottom mount: Design, testing, and application. IEEE J. Oceanic Eng., 25, 430436, doi:10.1109/48.895350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phong-Anant, D., R. A. Antonia, A. J. Chamber, and S. Rajagopalan, 1980: Features of the organized motion in the atmospheric surface layer. J. Geophys. Res., 85, 424432, doi:10.1029/JC085iC01p00424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. M. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the surface waves processes program. J. Geophys. Res., 101, 35253543, doi:10.1029/95JC03282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R., and K. J. H. Thomas, 1989: Vertical circulation revealed diurnal heating of the upper ocean in late winter: Part I: Observations. J. Phys. Oceanogr., 19, 269278, doi:10.1175/1520-0485(1989)019<0269:VCRBDH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, T. J., and M. C. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, doi:10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, doi:10.1029/91JC03118.

  • Smith, J. A., 1996: Observations of Langmuir circulation, waves, and the mixed layer. The Air Sea Interface: Radio and Acoustic Sensing, Turbulence, and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., University of Toronto Press, 613–622.

  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, doi:10.1029/97JC03611.

  • Smith, J. A., R. Pinkel, and R. A. Weller, 1987: Velocity structure in the mixed layer during MILDEX. J. Phys. Oceanogr., 17, 425439, doi:10.1175/1520-0485(1987)017<0425:VSITML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., 1990: Coherent structure at the ocean surface in the convectively unstable conditions. Nature, 346, 157160, doi:10.1038/346157a0.

  • Soloviev, A. V., and R. Lukas, 2014: The Near-Surface Layer of the Ocean: Structure, Dynamics, and Applications. 2nd ed. Springer, 552 pp.

  • Soloviev, A. V., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35A, 18591874, doi:10.1016/0198-0149(88)90113-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teledyne RDI, 2009: Waves primer: Wave measurements and the RDI ADCP waves array technique. Teledyne RD Instruments Inc. Tech. Doc., 30 pp.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Thorpe, S. A., 1984: On the determination of Kv in the near-surface ocean from acoustic measurements of bubbles. J. Phys. Oceanogr., 14, 855863, doi:10.1175/1520-0485(1984)014<0855:OTDOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, doi:10.1146/annurev.fluid.36.052203.071431.

  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

    • Crossref
    • Export Citation
  • Thorpe, S. A., M. Cure, and M. White, 1991: The skewness of temperature in oceanic boundary layers. J. Phys. Oceanogr., 21, 428433, doi:10.1175/1520-0485(1991)021<0428:TSOTDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, R., A. E. Tejada-Martiez, and C. E. Grosch, 2016: Large-eddy simulation of a coastal ocean under the combined effects of surface heat fluxes and full-depth Langmuir circulation. J. Phys. Oceanogr., 46, 24112426, doi:10.1175/JPO-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. W., H. W. Wijesekera, E. Jarosz, W. J. Teague, and W. S. Pegau, 2016: Turbulent diffusivity under high winds from acoustic measurements of bubbles. J. Phys. Oceanogr., 46, 15931613, doi:10.1175/JPO-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35A, 711747, doi:10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and M. C. Gregg, 1996: Surface layer response to weak winds, westerly bursts and rain squalls in the western Pacific Warm Pool. J. Geophys. Res., 101, 977997, doi:10.1029/95JC02553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., C. A. Paulson, and A. Huyer, 2001: Horizontal wave number spectra of temperature in the unstably stratified oceanic surface layer. J. Geophys. Res., 106, 16 92916 946, doi:10.1029/2000JC000624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., C. A. Paulson, and E. D. Skyllingstad, 2004: Scaled temperature spectrum in the unstable oceanic surface layer. J. Geophys. Res., 109, C03015, doi:10.1029/2003JC002066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. Wang, W. J. Teague, E. Jarosz, E. Rogers, D. B. Fribance, and J. N. Moum, 2013: Surface wave effects on high-frequency currents over a shelf edge bank. J. Phys. Oceanogr., 43, 16271647, doi:10.1175/JPO-D-12-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zedel, L., and D. Farmer, 1991: Organized structures in subsurface bubble clouds – Langmuir circulation in the open ocean. J. Geophys. Res., 96, 88898900, doi:10.1029/91JC00189.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 127 11
PDF Downloads 131 27 2