Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods

Friederike Pollmann Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Friederike Pollmann in
Current site
Google Scholar
PubMed
Close
,
Carsten Eden Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
, and
Dirk Olbers Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven, and Zentrum für Marine Umweltwissenschaften (MARUM), Universität Bremen, Bremen, Germany

Search for other papers by Dirk Olbers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale turbulent mixing affects large-scale ocean processes such as the global overturning circulation but remains unresolved in ocean models. Since the breaking of internal gravity waves is a major source of this mixing, consistent parameterizations take internal wave energetics into account. The model Internal Wave Dissipation, Energy and Mixing (IDEMIX) predicts the internal wave energy, dissipation rates, and diapycnal diffusivities based on a simplification of the spectral radiation balance of the wave field and can be used as a mixing module in global numerical simulations. In this study, it is evaluated against finestructure estimates of turbulent dissipation rates derived from Argo float observations. In addition, a novel method to compute internal gravity wave energy from finescale strain information alone is presented and applied. IDEMIX well reproduces the magnitude and the large-scale variations of the Argo-derived dissipation rate and energy level estimates. Deficiencies arise with respect to the detailed vertical structure or the spatial extent of mixing hot spots. This points toward the need to improve the forcing functions in IDEMIX, both by implementing additional physical detail and by better constraining the processes already included in the model. A prominent example is the energy transfer from the mesoscale eddies to the internal gravity waves, which is identified as an essential contributor to turbulent mixing in idealized simulations but needs to be better understood through the help of numerical, analytical, and observational studies in order to be represented realistically in ocean models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Friederike Pollmann, friederike.pollmann@uni-hamburg.de

Abstract

Small-scale turbulent mixing affects large-scale ocean processes such as the global overturning circulation but remains unresolved in ocean models. Since the breaking of internal gravity waves is a major source of this mixing, consistent parameterizations take internal wave energetics into account. The model Internal Wave Dissipation, Energy and Mixing (IDEMIX) predicts the internal wave energy, dissipation rates, and diapycnal diffusivities based on a simplification of the spectral radiation balance of the wave field and can be used as a mixing module in global numerical simulations. In this study, it is evaluated against finestructure estimates of turbulent dissipation rates derived from Argo float observations. In addition, a novel method to compute internal gravity wave energy from finescale strain information alone is presented and applied. IDEMIX well reproduces the magnitude and the large-scale variations of the Argo-derived dissipation rate and energy level estimates. Deficiencies arise with respect to the detailed vertical structure or the spatial extent of mixing hot spots. This points toward the need to improve the forcing functions in IDEMIX, both by implementing additional physical detail and by better constraining the processes already included in the model. A prominent example is the energy transfer from the mesoscale eddies to the internal gravity waves, which is identified as an essential contributor to turbulent mixing in idealized simulations but needs to be better understood through the help of numerical, analytical, and observational studies in order to be represented realistically in ocean models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Friederike Pollmann, friederike.pollmann@uni-hamburg.de
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, doi:10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, doi:10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, doi:10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61.

    • Crossref
    • Export Citation
  • Chou, S. H., D. S. Luther, M. D. Guiles, G. S. Carter, and T. Decloedt, 2014: An empirical investigation of nonlinear energy transfer from the M2 internal tide to diurnal wave motions in the Kauai Channel, Hawaii. Geophys. Res. Lett., 41, 505512, doi:10.1002/2013GL058320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., G. Holloway, and E. Gargett, 1990: Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817830, doi:10.1175/1520-0485(1990)020<0817:SOTGOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desaubies, Y., and W. K. Smith, 1982: Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr., 12, 12451259, doi:10.1175/1520-0485(1982)012<1245:SORNAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., 2016: Closing the energy cycle in an ocean model. Ocean Modell., 101, 3042, doi:10.1016/j.ocemod.2016.02.005.

  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, doi:10.1016/j.ocemod.2007.09.002.

  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, doi:10.1175/JPO-D-13-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., L. Czeschel, and D. Olbers, 2014: Toward energetically consistent ocean models. J. Phys. Oceanogr., 44, 31603184, doi:10.1175/JPO-D-13-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, doi:10.1175/JPO-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109, doi:10.1175/JPO2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and J. Moum, 1995: Mixing efficiencies in turbulent tidal fronts: Results from direct and indirect measurements of density flux. J. Phys. Oceanogr., 25, 25832608, doi:10.1175/1520-0485(1995)025<2583:MEITTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, doi:10.1080/03091927208236082.

  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes fur Seeschifffahrt und Hydrographie Rep. 35/2004, 52 pp.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1967: Weak-interaction theory of ocean waves. Basic Developments in Fluid Dynamics, M. Holt, Ed., Academic Press, 117–182.

    • Crossref
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, doi:10.1029/2001JC001210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T., D. L. Rudnick, M. H. Alford, A. Pickering, and H. L. Simmons, 2013: Internal tidal energy fluxes in the South China Sea from density and velocity measurements by gliders. J. Geophys. Res. Oceans, 118, 39393949, doi:10.1002/jgrc.20311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., S. Nishino, J. Inoue, K. Maeno, H. Takeda, and K. Oshima, 2016: Enhanced diapycnal mixing due to near-inertial internal waves propagating through an anticyclonic eddy in the ice-free Chukchi Plateau. J. Phys. Oceanogr., 46, 24572481, doi:10.1175/JPO-D-15-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and S. Llewellyn Smith, 2004: The role of small-scale topography in turbulent mixing of the global ocean. Oceanography, 17, 5564, doi:10.5670/oceanog.2004.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., and M. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., and K. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., M. Alford, R. Pinkel, J. Klymak, and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. Caulfield, and W. Peltier, 2013: Time-dependent, non-monotonic mixing in stratified turbulent shear flows: Implications for oceanographic estimates of buoyancy flux. J. Fluid Mech., 736, 570593, doi:10.1017/jfm.2013.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., 1977: Equilibrium mechanisms within the oceanic internal wave field. J. Phys. Oceanogr., 7, 836845, doi:10.1175/1520-0485(1977)007<0836:EMWTOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11, 139147, doi:10.1175/1520-0485(1981)011<0139:TSORIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J., M. Gregg, R. Lien, and M. Carr, 1995: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12, 346366, doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and D. J. Olbers, 1975: On the dynamics of internal waves in the deep ocean. J. Geophys. Res., 80, 38483860, doi:10.1029/JC080i027p03848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and A. Natarov, 2003: The Internal Wave Action Model (IWAM). Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 95–105.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, MIT Press, 264–291.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., T. Hibiya, Y. Niwa, M. Watanabe, Y. Isoda, S. Takagi, and Y. Kamei, 2002: Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107, 3221, doi:10.1029/2002JC001376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1974: On the energy balance of small-scale internal waves in the deep-sea. Hamburger Geophysikalische Einzelschriften 24, 91 pp.

  • Olbers, D., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399, doi:10.1017/S0022112076001857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and K. Herterich, 1979: The spectral energy transfer from surface waves to internal waves. J. Fluid Mech., 92, 349379, doi:10.1017/S0022112079000653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2016: Revisiting the generation of internal waves by resonant interaction with surface waves. J. Phys. Oceanogr., 46, 23352350, doi:10.1175/JPO-D-15-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer-Verlag, 703 pp.

    • Crossref
    • Export Citation
  • Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34, 214230, doi:10.1175/1520-0485(2004)034<0214:AHDOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from POLYMODE. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, doi:10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., M. H. Alford, and T. Paluszkiewicz, 2012: An introduction to the special issue on internal waves. Oceanography, 25, 1519, doi:10.5670/oceanog.2012.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, H., and E. Kunze, 1999: Internal wave–wave interactions. Part II: Spectral energy transfer and turbulence production. J. Phys. Oceanogr., 29, 29052919, doi:10.1175/1520-0485(1999)029<2905:IWWIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, and K. L. Polzin, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, doi:10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., L. Padman, T. Dillon, M. Levine, C. Paulson, and R. Pinkel, 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, doi:10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willebrand, J., P. Müller, and D. Olbers, 1977: Inverse analysis of the Trimoored Internal Wave Experiment (IWEX), part 1. Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 201, 117 pp.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W., and M. B. Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, doi:10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684, doi:10.1175/2009JPO3922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 690 209 12
PDF Downloads 510 125 5