Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS

Sophia E. Brumer Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Sophia E. Brumer in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Zappa Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Christopher J. Zappa in
Current site
Google Scholar
PubMed
Close
,
Ian M. Brooks School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Ian M. Brooks in
Current site
Google Scholar
PubMed
Close
,
Hitoshi Tamura Port and Airport Research Institute, Yokosuka, Japan

Search for other papers by Hitoshi Tamura in
Current site
Google Scholar
PubMed
Close
,
Scott M. Brown Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Scott M. Brown in
Current site
Google Scholar
PubMed
Close
,
Byron W. Blomquist National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Byron W. Blomquist in
Current site
Google Scholar
PubMed
Close
,
Christopher W. Fairall National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Christopher W. Fairall in
Current site
Google Scholar
PubMed
Close
, and
Alejandro Cifuentes-Lorenzen Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Alejandro Cifuentes-Lorenzen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.

This is Lamont-Doherty Earth Observatory Contribution Number 8134.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sophia E. Brumer, sbrumer@ldeo.columbia.edu

Abstract

Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.

This is Lamont-Doherty Earth Observatory Contribution Number 8134.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sophia E. Brumer, sbrumer@ldeo.columbia.edu
Save
  • Albert, M. F. M. A., M. D. Anguelova, A. M. M. Manders, M. Schaap, and G. de Leeuw, 2016: Parameterization of oceanic whitecap fraction based on satellite observations. Atmos. Chem. Phys., 16, 13 72513 751, doi:10.5194/acp-16-13725-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 1341, doi:10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., and F. Webster, 2006: Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res., 111, C03017, doi:10.1029/2005JC003158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., and R. Wanninkhof, 1998: The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. J. Geophys. Res., 103, 10 55510 560, doi:10.1029/98JC00245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., and Coauthors, 1995: Measurement of gas transfer, whitecap coverage, and brightness temperature in a surf pool: An overview of WABEX-93. Proc. Third Int. Symp. on Air-Water Gas Transfer, Heidelberg, Germany, Image Processing, 205216.

    • Crossref
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375, doi:10.1175/1520-0485(2002)032<3364:MMOOWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1963: The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr., 1, 73202, doi:10.1016/0079-6611(63)90004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1983: The production, distribution, and bacterial enrichment of the sea-salt aerosol. Air-Sea Exchange of Gases and Particles, P. S. Liss and W. G. N. Slinn, Eds., Springer, 407–454.

    • Crossref
    • Export Citation
  • Blomquist, B. W., C. W. Fairall, B. J. Huebert, D. J. Kieber, and G. R. Westby, 2006: DMS sea-air transfer velocity: Direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophys. Res. Lett., 33, L07601, doi:10.1029/2006GL025735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobak, J. P., W. E. Asher, D. J. Dowgiallo, and M. D. Anguelova, 2011: Aerial radiometric and video measurements of whitecap coverage. IEEE Trans. Geosci. Remote Sens., 49, 21832193, doi:10.1109/TGRS.2010.2103565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bortkovskii, R. S., 1987: Air-Sea Exchange of Heat and Moisture during Storms. Dordrecht, 193 pp.

    • Crossref
    • Export Citation
  • Bortkovskii, R. S., and V. A. Novak, 1993: Statistical dependencies of sea state characteristics on water temperature and wind-wave age. J. Mar. Syst., 4, 161169, doi:10.1016/0924-7963(93)90006-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouguet, J.-Y., 2015: Camera calibration toolbox for MATLAB. California Institute of Technology. [Available online at http://www.vision.caltech.edu/bouguetj/calib_doc/.]

  • Callaghan, A. H., and M. White, 2009: Automated processing of sea surface images for the determination of whitecap coverage. J. Atmos. Oceanic Technol., 26, 383394, doi:10.1175/2008JTECHO634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., G. B. Deane, and M. D. Stokes, 2008a: Observed physical and environmental causes of scatter in whitecap coverage values in a fetch-limited coastal zone. J. Geophys. Res., 113, C05022, doi:10.1029/2007JC004453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., G. D. Leeuw, L. Cohen, and C. D. O’Dowd, 2008b: Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett., 35, L23609, doi:10.1029/2008GL036165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., M. D. Stokes, and G. B. Deane, 2014: The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog. J. Geophys. Res. Oceans, 119, 74637482, doi:10.1002/2014JC010351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., G. B. Deane, and M. D. Stokes, 2016: Laboratory air-entraining breaking waves: Imaging visible foam signatures to estimate energy dissipation. Geophys. Res. Lett., 43, 11 32011 328, doi:10.1002/2016GL071226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and Coauthors, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, doi:10.1016/j.pocean.2007.05.005.

  • Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 16511661, doi:10.1175/BAMS-D-11-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifuentes-Lorenzen, A., J. B. Edson, C. J. Zappa, and L. Bariteau, 2013: A multi-sensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas Exchange Experiment. J. Atmos. Oceanic Technol., 30, 29072925, doi:10.1175/JTECH-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunliffe, M., and Coauthors, 2014: Guide to best practices to study the ocean's surface. Scientific Committee on Oceanic Research Sea Surface Microlayer Working Group Rep., 118 pp.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, G., E. L Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, 2011: Production flux of sea spray aerosol. Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., C. J. Zappa, J. Ware, W. R. McGillis, and J. E. Hare, 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109, C08S09, doi:10.1029/2003JC001960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2011: Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency. J. Geophys. Res., 116, C00F10, doi:10.1029/2011JC007022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2011: Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res., 116, C00F09, doi:10.1029/2010JC006884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., C. L. McNeil, and B. D. Johnson, 1993: Evidence for the importance of bubbles in increasing air–sea gas flux. Nature, 361, 620623, doi:10.1038/361620a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frew, N. M., 1997: The role of organic films in air-sea gas exchange. The Sea Surface and Global Change, P. S. Liss and R. A. Duce, Eds., Cambridge University Press, 121–172.

    • Crossref
    • Export Citation
  • Frouin, R., S. F. Iacobellis, and P. Y. Deschamps, 2001: Influence of oceanic whitecaps on the global radiation budget. Geophys. Res. Lett., 28, 15231526, doi:10.1029/2000GL012657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaiser, P. W., and Coauthors, 2004: The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472361, doi:10.1109/TGRS.2004.836867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, W. D., 1967: Stabilization of air bubbles at the air-sea interface by surface active material. Deep-Sea Res. Oceanogr. Abstr., 14, 661672, doi:10.1016/S0011-7471(67)80004-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddijn-Murphy, L., D. K. Woolf, and A. H. Callaghan, 2011: Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr., 41, 742756, doi:10.1175/2010JPO4533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., and M. Wang, 1994: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt., 33, 443452, doi:10.1364/AO.33.000443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, C., W. Hu, J. Sun, and R. Li, 2007: The whitecap coverage model from breaking dissipation parametrizations of wind waves. J. Geophys. Res., 112, C05031, doi:10.1029/2006JC003714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29, 16331648, doi:10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18, 277293, doi:10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, doi:10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283, 12991303, doi:10.1126/science.283.5406.1299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, D. T., and Coauthors, 2011: Southern Ocean Gas Exchange Experiment: Setting the stage. J. Geophys. Res., 116, C00F08, doi:10.1029/2010JC006852.

  • Holland, K. T., R. A. Holman, T. C. Lippmann, J. Stanley, and N. Plant, 1997: Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng., 22, 8192, doi:10.1109/48.557542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Y. Poon, and J. Wu, 1991: Temperature effects on generation and entrainment of bubbles induced by a water jet. J. Phys. Oceanogr., 21, 16021605, doi:10.1175/1520-0485(1991)021<1602:TEOGAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., C. J. Zappa, M. R. Loewen, and V. Hesany, 1997: Infrared remote sensing of breaking waves. Nature, 385, 5255, doi:10.1038/385052a0.

  • Johnson, D., 2012: DIWASP: Directional wave spectra toolbox for MATLAB: User manual. Research Rep. WP-1601-DJ (V1.1), 21 pp.

  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Crossref
    • Export Citation
  • Kraan, G., W. A. Oost, and P. A. E. M. Janssen, 1996: Wave energy dissipation by whitecaps. J. Atmos. Oceanic Technol., 13, 262267, doi:10.1175/1520-0426(1996)013<0262:WEDBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuik, A. J., G. P. van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, doi:10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, O. Le Calve, and S. Despiau, 2004: Analysis of the variations of the whitecap fraction as measured in a coastal zone. Bound.-Layer Meteor., 111, 339360, doi:10.1023/B:BOUN.0000016490.83880.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, and S. Despiau, 2007: Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J. Mar. Syst., 66, 3846, doi:10.1016/j.jmarsys.2006.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, B., C. J. Zappa, H. C. Graber, and A. Cifuentes-Lorenzen, 2017: Shipboard wave measurements in the Southern Ocean. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-16-0212.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, A. S., and V. A. Dulov, 2008: Detection of wave breaking using sea surface video records. Meas. Sci. Technol., 19, 015405, doi:10.1088/0957-0233/19/1/015405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1971: Oceanic whitecaps. J. Phys. Oceanogr., 1, 139144, doi:10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2.

  • Monahan, E. C., 1993: Occurrence and evolution of acoustically relevant sub-surface bubble plumes and their associated, remotely monitorable, surface whitecaps. Natural Physical Sources of Underwater Sound: Sea Surface Sound (2), B. R. Kerman, Ed., Springer Netherlands, 503517, doi:10.1007/978-94-011-1626-8_37.

    • Crossref
    • Export Citation
  • Monahan, E. C., and M. C. Spillane, 1984: The role of oceanic whitecaps in air-sea gas exchange. Gas Transfer at Water Surfaces, W. Brutsaert and G. H. Jirka, Eds., D. Reidel, 495–503.

    • Crossref
    • Export Citation
  • Monahan, E. C., and I. G. O’Muircheartaigh, 1986: Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens., 7, 627642, doi:10.1080/01431168608954716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., G. Hooker, and C. J. Zappa, 2015: The latitudinal variation in the wind-speed parameterization of oceanic whitecap coverage: Implications for global modelling of air-sea gas flux and sea surface aerosol generation. 19th Conf. on Air-Sea Interaction, Phoenix, AZ, Amer. Meteor. Soc., 14.5. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper260446.html.]

  • Mori, N., T. Suzuki, and S. Kakuno, 2007: Noise of acoustic Doppler velocimeter data in bubbly flows. J. Eng. Mech., 133, 122125, doi:10.1061/(ASCE)0733-9399(2007)133:1(122).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myrhaug, D., and L. E. Holmedal, 2008: Effects of wave age and air stability on whitecap coverage. Coastal Eng., 55, 959966, doi:10.1016/j.coastaleng.2008.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayar, K. G., M. H. Sharqawy, L. D. Banchik, and J. H. Lienhard V, 2016: Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination, 390, 124, doi:10.1016/j.desal.2016.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, S. J., I. M. Brooks, and D. J. Salisbury, 2013: A wave roughness Reynolds number parameterization of the sea spray source flux. Geophys. Res. Lett., 40, 44154419, doi:10.1002/grl.50795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paget, A. C., M. A. Bourassa, and M. D. Anguelova, 2015: Comparing in situ and satellite-based parameterizations of oceanic whitecaps. J. Geophys. Res. Oceans, 120, 28262843, doi:10.1002/2014JC010328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randolph, K., H. M. Dierssen, A. Cifuentes-Lorenzen, W. Balch, E. C. Monahan, C. Zappa, D. Drapeau, and B. Bowler, 2017: Novel methods for optically measuring whitecaps under natural wave breaking conditions in the Southern Ocean. J. Atmos. Oceanic Technol., 34, 533554, doi:10.1175/JTECH-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salisbury, D. J., M. D. Anguelova, and I. M. Brooks, 2013: On the variability of whitecap fraction using satellite-based observations. J. Geophys. Res. Oceans, 118, 62016222, doi:10.1002/2013JC008797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salisbury, D. J., M. D. Anguelova, and I. M. Brooks, 2014: Global distribution and seasonal dependence of satellite-based whitecap fraction. Geophys. Res. Lett., 41, 16161623, doi:10.1002/2014GL059246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salter, M. E., E. D. Nilsson, A. Butcher, and M. Bilde, 2014: On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos., 119, 90529072, doi:10.1002/2013JD021376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B., and B. Ward, 2013: Oceanic wave breaking coverage separation techniques for active and maturing whitecaps. Methods Oceanogr., 8, 112, doi:10.1016/j.mio.2014.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B., and B. Ward, 2016: The influence of environmental parameters on active and maturing oceanic whitecaps. J. Geophys. Res. Oceans, 121, 33253336, doi:10.1002/2015JC011230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., and J. Thomson, 2015a: A horizon-tracking method for shipboard video stabilization and rectification. J. Atmos. Oceanic Technol., 32, 164176, doi:10.1175/JTECH-D-14-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., and J. Thomson, 2015b: Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res. Oceans, 120, 83468363, doi:10.1002/2015JC011196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., J. Thomson, and J. R. Gemmrich, 2014: Wave breaking and dissipation in a young wind sea. J. Phys. Oceanogr., 44, 104127, doi:10.1175/JPO-D-12-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharqawy, M. H., J. H. Lienhard, and S. M. Zubair, 2010: Thermophysical properties of seawater: A review of existing correlations and data. Desalin. Water Treat., 16, 354380, doi:10.5004/dwt.2010.1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spillane, M., E. C. Monahan, P. Bowyer, D. Doyle, and P. J. Stabeno, 1986: Whitecaps and global fluxes. Oceanic Whitecaps, Springer, 209–218.

    • Crossref
    • Export Citation
  • Stokes, G. G., 1880: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Math. Phys. Pap., 1, 225228.

    • Search Google Scholar
    • Export Citation
  • Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka, and S. Serizawa, 2007: Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 4760, doi:10.1016/j.jmarsys.2006.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., E. D’Asaro, M. Cronin, W. Rogers, R. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, doi:10.1002/2013JC008837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1973: Local balance in the air-sea boundary processes. J. Oceanogr. Soc. Japan, 29, 209220, doi:10.1007/BF02108528.

  • Toba, Y., and M. Koga, 1986: A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. Oceanic Whitecaps, E. Monahan and G. Niocaill, Eds., Springer, 37–47.

    • Crossref
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III TM version 3.14. U.S. Department of Commerce/NOAA/NWS/NCEP Tech. Note, MMAB 276, 220 pp.

  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., B. Balasubramaniyan, L. D. Burroughs, D. V. Chalikov, Y. Y. Chao, H. S. Chen, and V. M. Gerald, 2002: Development and implementation of wind-generated ocean surface wave models at NCEP. Wea. Forecasting, 17, 311333, doi:10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, D. W. R., and C. D. Wirick, 1992: Large air–sea gas fluxes associated with breaking waves. Nature, 356, 694696, doi:10.1038/356694a0.

  • Woolf, D. K., 1997: Bubbles and their role in air–sea gas exchange. The Sea Surface and Global Change, P. S. Liss and R. Duce, Eds., Cambridge University Press, 173–206.

    • Crossref
    • Export Citation
  • Woolf, D. K., 2005: Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 8794, doi:10.3402/tellusb.v57i2.16783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., and Coauthors, 2007: Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test. J. Mar. Syst., 66, 7191, doi:10.1016/j.jmarsys.2006.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1988: Variations of whitecap coverage with wind stress and water temperature. J. Phys. Oceanogr., 18, 14481453, doi:10.1175/1520-0485(1988)018<1448:VOWCWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., M. L. Banner, J. R. Gemmrich, H. Schultz, R. P. Morison, D. A. LeBel, and T. Dickey, 2012: An overview of sea state conditions and air-sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, doi:10.1029/2011JC007336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, D., and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603616, doi:10.1023/A:1021215904955.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1519 501 27
PDF Downloads 1023 309 21