Seasonality of Deep Cycle Turbulence in the Eastern Equatorial Pacific

Hieu T. Pham Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Hieu T. Pham in
Current site
Google Scholar
PubMed
Close
,
William D. Smyth College of Earth, Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon

Search for other papers by William D. Smyth in
Current site
Google Scholar
PubMed
Close
,
Sutanu Sarkar Department of Mechanical and Aerospace Engineering, and Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Sutanu Sarkar in
Current site
Google Scholar
PubMed
Close
, and
James N. Moum College of Earth, Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon

Search for other papers by James N. Moum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonal cycles of the various oceanic and atmospheric factors influencing the deep cycle of turbulence in the eastern Pacific cold tongue are explored. Moored observations at 140°W have shown seasonal variability in the stratification, velocity shear, and turbulence above the Pacific Equatorial Undercurrent (EUC). In boreal spring, the thermocline and EUC shoal and turbulence decreases. Marginal instability (clustering of the local gradient Richardson number around the critical value of 1/4), evident throughout the rest of the year, has not been detected during spring. While the daily averaged turbulent energy dissipation in the EUC is weakest during the spring, it is not clear whether the diurnal fluctuations that define the deep cycle cease. Large-eddy simulations are performed using climatological initial and boundary conditions representative of January, April, July, and October. Deep cycle turbulence is evident in all cases; the mechanism remains the same, and the maximum turbulence levels are similar. In the April simulation, however, the deep cycle is confined to the uppermost ~30 m, explaining why it has not been detected in moored microstructure observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William D. Smyth, smythw@oregonstate.edu

Abstract

The seasonal cycles of the various oceanic and atmospheric factors influencing the deep cycle of turbulence in the eastern Pacific cold tongue are explored. Moored observations at 140°W have shown seasonal variability in the stratification, velocity shear, and turbulence above the Pacific Equatorial Undercurrent (EUC). In boreal spring, the thermocline and EUC shoal and turbulence decreases. Marginal instability (clustering of the local gradient Richardson number around the critical value of 1/4), evident throughout the rest of the year, has not been detected during spring. While the daily averaged turbulent energy dissipation in the EUC is weakest during the spring, it is not clear whether the diurnal fluctuations that define the deep cycle cease. Large-eddy simulations are performed using climatological initial and boundary conditions representative of January, April, July, and October. Deep cycle turbulence is evident in all cases; the mechanism remains the same, and the maximum turbulence levels are similar. In the April simulation, however, the deep cycle is confined to the uppermost ~30 m, explaining why it has not been detected in moored microstructure observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William D. Smyth, smythw@oregonstate.edu
Save
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602, doi:10.1145/321607.321609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteor., 25, 214226, doi:10.1175/1520-0450(1986)025<0214:CORCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, doi:10.1175/2008JPO4064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., A. C. Lavery, M. E. Scully, and J. H. Trowbridge, 2010: Mixing by shear instability at high Reynolds number. Geophys. Res. Lett., 37, L22607, doi:10.1029/2010GL045272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., H. Peters, J. C. Wesson, N. S. Oakey, and T. J. Shay, 1985: Intensive measurements of turbulence and shear in the Equatorial Undercurrent. Nature, 318, 140144, doi:10.1038/318140a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961, doi:10.1017/S0022112072001065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hummels, R., M. Dengler, and B. Bourles, 2013: Seasonal and regional variability of upper ocean diapycnal heat flux in the Atlantic cold tongue. Prog. Oceanogr., 111, 5274, doi:10.1016/j.pocean.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobitz, F. G., S. Sarkar, and C. W. VanAtta, 1997: Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech., 342, 231261, doi:10.1017/S0022112097005478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1976: Marine Optics. Elsevier, 231 pp.

  • Jurisa, J. T., J. D. Nash, J. N. Moum, and L. F. Kilcher, 2016: Controls on turbulent mixing in a strongly stratified and sheared tidal river plume. J. Phys. Oceanogr., 46, 23732388, doi:10.1175/JPO-D-15-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and W. R. Peltier, 1985a: The onset of turbulence in finite-amplitude Kelvin–Helmholtz billows. J. Fluid Mech., 155, 135, doi:10.1017/S0022112085001690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, doi:10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P. B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: Tropflux: Air–sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, doi:10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., D. R. Caldwell, M. Gregg, and J. N. Moum, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 1991–1993 El Niño. J. Geophys. Res., 100, 68816898, doi:10.1029/94JC03312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., M. McPhaden, and M. Gregg, 1996: High-frequency internal waves at 0°, 140° and their possible relationship to deep-cycle turbulence. J. Phys. Oceanogr., 26, 581600, doi:10.1175/1520-0485(1996)026<0581:HFIWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumb, F. E., 1964: The influence of cloud on hourly amounts of total solar radiation at the sea surface. Quart. J. Roy. Meteor. Soc., 90, 4356, doi:10.1002/qj.49709038305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowe, S. A., and J. M. Thompson, 1971: Stability of a stratified free shear layer. Phys. Fluids, 14, 453458, doi:10.1063/1.1693456.

  • McPhaden, M. J., 1995: The tropical atmosphere ocean array is completed. Bull. Amer. Meteor. Soc., 76, 739741.

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Moum, J. N., and D. R. Caldwell, 1985: Local influences on shear flow turbulence in the equatorial ocean. Science, 230, 315316, doi:10.1126/science.230.4723.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and T. P. Rippeth, 2009: Do observations adequately resolve the natural variability of oceanic turbulence? J. Mar. Syst., 77, 409417, doi:10.1016/j.jmarsys.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. Caldwell, and C. Paulson, 1989: Mixing in the equatorial surface layer and thermocline. J. Geophys. Res., 94, 20052021, doi:10.1029/JC094iC02p02005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. Hebert, C. Paulson, and D. Caldwell, 1992: Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr., 22, 13301345, doi:10.1175/1520-0485(1992)022<1330:TAIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, doi:10.1038/nature12363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., H. Peters, S. M. Kelly, J. L. Pelegrí, M. Emelianov, and M. Gasser, 2012: Turbulence and high-frequency variability in a deep gravity current outflow. Geophys. Res. Lett., 39, L18611, doi:10.1029/2012GL052899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1981: The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86, 11 04411 054, doi:10.1029/JC086iC11p11044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlin, A., and J. N. Moum, 2012: Comparison of thermal variance dissipation rates from moored and profiling instruments at the equator. J. Atmos. Oceanic Technol., 29, 13471362, doi:10.1175/JTECH-D-12-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., M. Gregg, and J. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 11991218, doi:10.1029/JC093iC02p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2010: Internal waves and turbulence in a stable stratified jet. J. Fluid Mech., 648, 297324, doi:10.1017/S0022112009993120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., S. Sarkar, and K. A. Brucker, 2009: Dynamics of a stratified shear layer above a region of uniform stratification. J. Fluid Mech., 630, 191223, doi:10.1017/S0022112009006478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., S. Sarkar, and K. B. Winters, 2012: Near-N oscillations and deep-cycle turbulence in an upper-Equatorial Undercurrent model. J. Phys. Oceanogr., 42, 21692184, doi:10.1175/JPO-D-11-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., S. Sarkar, and K. B. Winters, 2013: Large-eddy simulation of deep-cycle turbulence in an Equatorial Undercurrent model. J. Phys. Oceanogr., 43, 24902502, doi:10.1175/JPO-D-13-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, doi:10.1017/S0022112088002332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schudlich, R. R., and J. F. Price, 1992: Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean. J. Geophys. Res., 97, 54095422, doi:10.1029/91JC01918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 528, doi:10.1175/1520-0485(1999)029<0005:UOTDAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, doi:10.1002/2013GL058403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, Z. Li, and S. Thorpe, 2013: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr., 43, 24322455, doi:10.1175/JPO-D-13-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., H. T. Pham, J. N. Moum, and S. Sarkar, 2017: Pulsating turbulence in a marginally unstable stratified shear flow. J. Fluid Mech., 822, 327341, doi:10.1017/jfm.2017.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and P. Schlussel, 1996: Evolution of cool skin and direct air-sea gas transfer coeffcient during daytime. Bound.-Layer Meteor., 77, 4568, doi:10.1007/BF00121858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., W. D. Smyth, and J. Moum, 1998: Dynamic instability of stratified shear flow in the upper equatorial Pacific. J. Geophys. Res., 103, 10 32310 337, doi:10.1029/98JC00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, G., L. Marié, G. Reverdin, K. H. Christensen, G. Broström, and B. Ward, 2016: Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. J. Phys. Oceanogr., 46, 30513067, doi:10.1175/JPO-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., and Z. Liu, 2009: Marginal instability? J. Phys. Oceanogr., 39, 23732381, doi:10.1175/2009JPO4153.1.

  • Van Haren, H., L. Gostiaux, E. Morozov, and R. Tarakanov, 2014: Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys. Res. Lett., 41, 84458451, doi:10.1002/2014GL062421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and P. Muller, 2002: Effects of equatorial undercurrent shear on upper-ocean mixing and internal waves. J. Phys. Oceanogr., 32, 10411057, doi:10.1175/1520-0485(2002)032<1041:EOEUSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2015: Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23°W). J. Geophys. Res. Oceans, 120, 563581, doi:10.1002/2014JC010504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., and T. Dillon, 1991: Internal waves and mixing in the upper equatorial Pacific Ocean. J. Geophys. Res., 96, 71157125, doi:10.1029/90JC02727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., and M. J. McPhaden, 1999: Seasonal variability in the equatorial Pacific. J. Phys. Oceanogr., 29, 925947, doi:10.1175/1520-0485(1999)029<0925:SVITEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 104 10
PDF Downloads 291 66 6