On the Topographic Modulation of Large-Scale Eddying Flows

Timour Radko Department of Oceanography, U.S. Naval Postgraduate School, Monterey, California

Search for other papers by Timour Radko in
Current site
Google Scholar
PubMed
Close
and
Igor Kamenkovich Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modulation of large-scale eddying flows by gentle variation in topography is examined using a combination of direct numerical simulations and theoretical arguments. The basic state is represented by a laterally uniform zonal current that is restricted to the upper layer of a baroclinically unstable quasigeostrophic two-layer system. Therefore, the observed topographically induced generation of large-scale patterns is attributed entirely to the action of mesoscale eddies. The parameter regime investigated in this study is not conducive to the spontaneous formation of stationary zonal jets. The interaction between the large-scale current, eddies, and topography is described using an asymptotic multiscale model. The ability of the model to explicitly represent the interaction between distinct flow components makes it possible to unambiguously interpret the essential dynamics of the topographic/eddy-induced modulation. The multiscale solutions obtained reflect the balance between the modification of the meridional fluxes of potential vorticity (PV) due to the variation in topography and the corresponding modification of PV fluxes due to the induced large-scale circulation. The predictions of the asymptotic theory are successfully tested by comparing to the ones obtained by direct numerical simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timour Radko, tradko@nps.edu

Abstract

The modulation of large-scale eddying flows by gentle variation in topography is examined using a combination of direct numerical simulations and theoretical arguments. The basic state is represented by a laterally uniform zonal current that is restricted to the upper layer of a baroclinically unstable quasigeostrophic two-layer system. Therefore, the observed topographically induced generation of large-scale patterns is attributed entirely to the action of mesoscale eddies. The parameter regime investigated in this study is not conducive to the spontaneous formation of stationary zonal jets. The interaction between the large-scale current, eddies, and topography is described using an asymptotic multiscale model. The ability of the model to explicitly represent the interaction between distinct flow components makes it possible to unambiguously interpret the essential dynamics of the topographic/eddy-induced modulation. The multiscale solutions obtained reflect the balance between the modification of the meridional fluxes of potential vorticity (PV) due to the variation in topography and the corresponding modification of PV fluxes due to the induced large-scale circulation. The predictions of the asymptotic theory are successfully tested by comparing to the ones obtained by direct numerical simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timour Radko, tradko@nps.edu
Save
  • Alvarez, A., J. Tintoré, G. Holloway, M. Eby, and J. M. Beckers, 1994: Effect of topographic stress on circulation in the western Mediterranean. J. Geophys. Res., 99, 16 05316 064, doi:10.1029/94JC00811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and Y.-N. Young, 2002: Stratified Kolmogorov flow. J. Fluid Mech., 450, 131167, doi:10.1017/S0022111002006371.

  • Balmforth, N. J., and Y.-N. Young, 2005: Stratified Kolmogorov flow. Part 2. J. Fluid Mech., 528, 2342, doi:10.1017/S002211200400271X.

  • Berloff, P., 2005: On rectification of randomly forced flows. J. Mar. Res., 63, 497527, doi:10.1357/0022240054307894.

  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, doi:10.1017/jfm.2011.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boland, E., A. Thompson, E. Shuckburgh, and P. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651, doi:10.1175/JPO-D-11-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., and I. Kamenkovich, 2013: Effects of topography on baroclinic instability. J. Phys. Oceanogr., 43, 790804, doi:10.1175/JPO-D-12-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., I. Kamenkovich, and P. Berloff, 2015: On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr., 45, 927940, doi:10.1175/JPO-D-14-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Miranda, A. P., B. Barnier, and W. K. Dewar, 1999: On the dynamics of the Zapiola anticyclone. J. Geophys. Res., 104, 21 13721 149, doi:10.1029/1999JC900042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1998: Topography and barotropic transport control by bottom friction. J. Mar. Res., 56, 295328, doi:10.1357/002224098321822320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D., and M. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, doi:10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, doi:10.1175/JAS4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2008: Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65, 33533375, doi:10.1175/2008JAS2611.1.

  • Frederiksen, J. S., 1999: Subgrid-scale parameterizations of eddy-topographic force, eddy viscosity, and stochastic backscatter for flow over topography. J. Atmos. Sci., 56, 14811494, doi:10.1175/1520-0469(1999)056<1481:SSPOET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gama, S., M. Vergassola, and U. Frisch, 1994: Negative eddy viscosity in isotropically forced two-dimensional flow: Linear and nonlinear dynamics. J. Fluid Mech., 260, 95126, doi:10.1017/S0022112094003459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. E., 1975: Baroclinic instability over a slope. Part I: Linear theory. J. Phys. Oceanogr., 5, 625633, doi:10.1175/1520-0485(1975)005<0625:BIOASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Eddies, waves, circulation and mixing: Statistical geophysical fluid mechanics. Annu. Rev. Fluid Mech., 18, 91147, doi:10.1146/annurev.fl.18.010186.000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech., 184, 463476, doi:10.1017/S0022112087002970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046, doi:10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 2008: Observing global ocean topostrophy. J. Geophys. Res., 113, C07054, doi:10.1029/2007JC004635.

  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, doi:10.1175/2009JPO4239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr., 45, 778791, doi:10.1175/JPO-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kevorkian, J., and J. D. Cole, 1996: Multiple Scale and Singular Perturbation Methods. Springer, 632 pp.

    • Crossref
    • Export Citation
  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 14271439, doi:10.1175/1520-0485(2001)031<1427:MTAAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfroi, A., and W. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56, 784800, doi:10.1175/1520-0469(1999)056<0784:SEOZJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfroi, A., and W. Young, 2002: Stability of beta-plane Kolmogorov flow. Physica D, 162, 208232, doi:10.1016/S0167-2789(01)00384-0.

  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, doi:10.1175/JPO-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the World Ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, C. C., and M. Vernescu, 2010: Homogenization Methods for Multiscale Mechanics. World Scientific Publishing, 330 pp.

    • Crossref
    • Export Citation
  • Merryfield, W. J., and G. Holloway, 1999: Eddy fluxes and topography in stratified quasigeostrophic models. J. Fluid Mech., 380, 5980, doi:10.1017/S0022112098003656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meshalkin, L., and Y. Sinai, 1961: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech., 25, 17001705, doi:10.1016/0021-8928(62)90149-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

  • Novikov, A., and G. Papanicolaou, 2001: Eddy viscosity of cellular flows. J. Fluid Mech., 446, 173198.

  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large-scale extra tropical flow pattern. J. Meteor., 8, 381394, doi:10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2011: Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res., 69, 723752, doi:10.1357/002224011799849426.

  • Radko, T., 2016: On the spontaneous generation of large-scale eddy-induced patterns: The average eddy model. J. Fluid Mech., 809, 316344, doi:10.1017/jfm.2016.668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, doi:10.1017/S0022112075001504.

  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg et al., Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189–318.

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, doi:10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1987: Rossby waves and two-dimensional turbulence in a large-scale zonal jet. J. Fluid Mech., 183, 467509, doi:10.1017/S0022112087002738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1988: Nonlinear saturation of baroclinic instability. Part I: The two-layer model. J. Atmos. Sci., 45, 20142025, doi:10.1175/1520-0469(1988)045<2014:NSOBIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, doi:10.1175/JAS-D-11-0200.1.

  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L., 1995: The effect of continental rises on the wind-driven ocean circulation. J. Phys. Oceanogr., 25, 12961316, doi:10.1175/1520-0485(1995)025<1296:TEOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24, 22632277, doi:10.1175/1520-0485(1994)024<2263:MZJIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 136 8
PDF Downloads 188 52 4