Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean

S. D. Bachman Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by S. D. Bachman in
Current site
Google Scholar
PubMed
Close
,
J. R. Taylor Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by J. R. Taylor in
Current site
Google Scholar
PubMed
Close
,
K. A. Adams School of Biological and Marine Sciences, Plymouth University, Plymouth, United Kingdom

Search for other papers by K. A. Adams in
Current site
Google Scholar
PubMed
Close
, and
P. J. Hosegood School of Biological and Marine Sciences, Plymouth University, Plymouth, United Kingdom

Search for other papers by P. J. Hosegood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Submesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air–sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in the Drake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12° and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192° and grid spacing of about 500 m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth between the 1/12° and 1/192° simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large . It is found that is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.

Denotes content that is immediately available upon publication as open access.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Publisher's Note: This article was revised on 4 October 2017 to include the open access designation that was missing when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. D. Bachman, bachman@ucar.edu

Abstract

Submesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air–sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in the Drake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12° and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192° and grid spacing of about 500 m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth between the 1/12° and 1/192° simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large . It is found that is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.

Denotes content that is immediately available upon publication as open access.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Publisher's Note: This article was revised on 4 October 2017 to include the open access designation that was missing when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. D. Bachman, bachman@ucar.edu
Save
  • Adams, K., P. Hosegood, J. Taylor, J.-B. Sallée, S. Bachman, and M. Stamper, 2017: Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy. J. Phys. Oceanogr., 47, 1737 1753, doi:10.1175/JPO-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S., and J. Taylor, 2016: Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. J. Phys. Oceanogr., 46, 919935, doi:10.1175/JPO-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S., B. Fox-Kemper, J. Taylor, and L. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, doi:10.1016/j.ocemod.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. Marshall, A. Naveira Garabato, and A. Nurser, 2015: The seasonal cycle of submesoscale flows. Ocean Modell., 92, 6984, doi:10.1016/j.ocemod.2015.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, doi:10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

  • Canuto, V., and M. Dubovikov, 2010: Mixed layer sub-mesoscale parameterization—Part 1: Derivation and assessment. Ocean Sci., 6, 679693, doi:10.5194/os-6-679-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current system. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. Talley, M. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr., 43, 14851511, doi:10.1175/JPO-D-12-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E., and Z. Garraffo, 2001: Viscosity parameterization and the Gulf Stream separation. From Stirring to Mixing in a Stratified Ocean: Proc. ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 39–43.

  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, doi:10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and D. McGillicuddy, 2002: Mesoscale and submesoscale physical-biological interactions. Biological–Physical Interactions in the Sea, A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 12, John Wiley and Sons, 113–185.

  • Fox-Kemper, B., and D. Menemenlis, 2008: Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319–337.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Münnich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120, 74137449, doi:10.1002/2015JC011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T., J. Sarmiento, D. Paynter, J. Dunne, J. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, doi:10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., and J. Marra, 2002: Effects of upper ocean physical processes (turbulence, advection, and air–sea interaction) on oceanic primary production. Biological–Physical Interactions in the Sea, A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 12, John Wiley and Sons, 19–49.

  • Holte, J., and L. Talley, 2009: A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. J. Atmos. Oceanic Technol., 26, 19201939, doi:10.1175/2009JTECHO543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., and W. Dewar, 2015: The energetics of centrifugal instability. J. Phys. Oceanogr., 45, 15541573, doi:10.1175/JPO-D-14-0064.1.

  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, doi:10.1038/nature08526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, doi:10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, doi:10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1996: Stochastic models of chaotic systems. Physica D, 98, 481491, doi:10.1016/0167-2789(96)00107-8.

  • Lévy, M., and A. Martin, 2013: The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Global Biogeochem. Cycles, 27, 11391150, doi:10.1002/2012GB004518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A. Tréguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, doi:10.1357/002224001762842181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A. Tréguier, S. Masson, and K. Takahashi, 2012: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43–44, 7793, doi:10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and D. Archer, 2000: Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res., 105, 12091225, doi:10.1029/1999JC900216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., J. Molemaker, and I. Yavneh, 2001: From stirring to mixing of momentum: Cascades from balanced flows to dissipation in the oceanic interior. From Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 59–66.

  • McWilliams, J., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005. doi:10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J., Z. Garraffo, A. Griffa, T. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, doi:10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, doi:10.1029/2005JC002964.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A., K. Polzin, B. King, K. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A., R. Ferrari, and K. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, doi:10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, doi:10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omand, M., E. D’Asaro, C. Lee, M. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222225, doi:10.1126/science.1260062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R., and L. Regier, 1990: Large variations in potential vorticity at small spatial scales in the upper ocean. Nature, 348, 227229, doi:10.1038/348227a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C., T. Chereskin, S. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, doi:10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. Hogg, P. Strutton, A. Kiss, R. Matear, A. Klocker, and E. van Sebille, 2014: Vertical transport in the ocean due to sub-mesoscale structures: Impacts in the Kerguelen region. Ocean Modell., 80, 1023, doi:10.1016/j.ocemod.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. Hogg, A. Kiss, and B. Gayen, 2015: Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett., 42, 11391147, doi:10.1002/2014GL062720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. Hogg, R. Matear, and P. Strutton, 2016: Quantifying the influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean phytoplankton blooms. Deep-Sea Res. I, 115, 199209, doi:10.1016/j.dsr.2016.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., 1996: Intensive surveys of the Azores Front: 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101, 16 29116 303, doi:10.1029/96JC01144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, and R. Morrow, 2008: Response of the Antarctic Circumpolar Current to atmospheric variability. J. Climate, 21, 30203039, doi:10.1175/2007JCLI1702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, doi:10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. Matear, S. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/ngeo1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, doi:10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C., 2015: On the generation of waves during frontogenesis. Ph.D. dissertation, University of Cambridge, 221 pp.

  • Shakespeare, C., and J. Taylor, 2014: The spontaneous generation of inertia–gravity waves generated during frontogenesis forced by large strain: Theory. J. Fluid Mech., 757, 817853, doi:10.1017/jfm.2014.514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C., and J. Taylor, 2015: The spontaneous generation of inertia–gravity waves generated during frontogenesis forced by large strain: Numerical simulations. J. Fluid Mech., 772, 508534, doi:10.1017/jfm.2015.197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C., and J. Taylor, 2016: Spontaneous wave generation at strongly strained density fronts. J. Phys. Oceanogr., 46, 20632081, doi:10.1175/JPO-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C., and A. Hogg, 2017: Spontaneous surface generation and interior amplification of internal waves in a regional-scale ocean model. J. Phys. Oceanogr., 47, 811826, doi:10.1175/JPO-D-16-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, doi:10.1029/2008JC005108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, S., and K. Richards, 2000: A numerical model of mesoscale frontal instabilities and plankton dynamics—I. Model formulation and initial experiments. Deep-Sea Res. I, 47, 12611301, doi:10.1016/S0967-0637(99)00081-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. Naveira Garabato, J. Ledwell, A. Thurnherr, J. Toole, and A. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2009: On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech., 622, 103113, doi:10.1017/S0022112008005272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, doi:10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, doi:10.1175/JPO2830.1.

  • Thomas, L. N., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, doi:10.1175/2008JPO3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and J. R. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, doi:10.1029/2010GL044680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, doi:10.1029/177GM04.

    • Crossref
    • Export Citation
  • Thompson, A., A. Lazar, C. Buckingham, A. Naveira Garabato, G. Damerell, and K. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, doi:10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A., J. Ledwell, M. Messias, B. King, N. Mackay, M. Meredith, B. Mills, and A. Garabato, 2013: Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 501, 408411, doi:10.1038/nature12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, doi:10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1174 283 14
PDF Downloads 1018 211 11