Submesoscale Dynamics in the Northern Gulf of Mexico. Part I: Regional and Seasonal Characterization and the Role of River Outflow

Roy Barkan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Roy Barkan in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
Alexander F. Shchepetkin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Alexander F. Shchepetkin in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
,
Lionel Renault Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
,
Annalisa Bracco School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Annalisa Bracco in
Current site
Google Scholar
PubMed
Close
, and
Jun Choi School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jun Choi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Realistic, submesoscale-resolving numerical simulations are used to characterize the flow’s statistics and the geography of surface submesoscale currents in the northern Gulf of Mexico. This study examines the role of the Mississippi–Atchafalaya River system in driving submesoscale currents during winter and summer, on and off the shelf, by investigating two sets of statistically equilibrated solutions, with and without river forcing. In this paper, the first of three, the authors analyze vorticity ζ, horizontal divergence δ, and available potential energy to eddy kinetic energy conversion and show that river forcing has an important effect on the spatial distribution and magnitudes of submesoscale currents in both seasons. During winter, solutions without river forcing display an increase in seasonal-mean values of ζ, δ and compared to solutions with river forcing, particularly east of the Mississippi River delta and offshore. On the contrary, during summer, seasonal-mean values are larger in solutions with river forcing throughout the entire region. The river effects can be rationalized in terms of scaling arguments that relate submesoscale current magnitudes to the surface boundary layer depth and lateral buoyancy gradients. River outflow enhances submesoscale currents by increasing lateral buoyancy gradients but suppresses them by decreasing the boundary layer depth. A discussion of the submesoscale-generating mechanisms that in each season may determine whether the enhancement effect overcomes the suppression effect or vice versa is presented. Regional comparisons of horizontal velocity spectra, root-mean-square ζ, root-mean-square δ, and root‐mean‐square across different resolutions show no sign of convergence even at 150-m horizontal resolution. This demonstrates the numerical challenge of modeling the full range of submesoscale currents.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0035.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roy Barkan, rbarkan@atmos.ucla.edu

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0040.1 and http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0036.1

Abstract

Realistic, submesoscale-resolving numerical simulations are used to characterize the flow’s statistics and the geography of surface submesoscale currents in the northern Gulf of Mexico. This study examines the role of the Mississippi–Atchafalaya River system in driving submesoscale currents during winter and summer, on and off the shelf, by investigating two sets of statistically equilibrated solutions, with and without river forcing. In this paper, the first of three, the authors analyze vorticity ζ, horizontal divergence δ, and available potential energy to eddy kinetic energy conversion and show that river forcing has an important effect on the spatial distribution and magnitudes of submesoscale currents in both seasons. During winter, solutions without river forcing display an increase in seasonal-mean values of ζ, δ and compared to solutions with river forcing, particularly east of the Mississippi River delta and offshore. On the contrary, during summer, seasonal-mean values are larger in solutions with river forcing throughout the entire region. The river effects can be rationalized in terms of scaling arguments that relate submesoscale current magnitudes to the surface boundary layer depth and lateral buoyancy gradients. River outflow enhances submesoscale currents by increasing lateral buoyancy gradients but suppresses them by decreasing the boundary layer depth. A discussion of the submesoscale-generating mechanisms that in each season may determine whether the enhancement effect overcomes the suppression effect or vice versa is presented. Regional comparisons of horizontal velocity spectra, root-mean-square ζ, root-mean-square δ, and root‐mean‐square across different resolutions show no sign of convergence even at 150-m horizontal resolution. This demonstrates the numerical challenge of modeling the full range of submesoscale currents.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0035.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roy Barkan, rbarkan@atmos.ucla.edu

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0040.1 and http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0036.1

Supplementary Materials

    • Supplemental Materials (ZIP 100 MB)
Save
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234, doi:10.5194/essd-2-215-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2009: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Barkan, R., J. C. McWilliams, M. J. Molemaker, J. Choi, K. Srinivasan, A. F. Shchepetkin, and A. Bracco, 2017: Submesoscale dynamics in the northern Gulf of Mexico. Part II: Temperature–salinity compensation and cross-shelf transport processes. J. Phys. Oceanogr., 47, 23472360, https://doi.org/10.1175/JPO-D-17-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., A. Bracco, R. Barkan, A. F. Shchepetkin, J. C. McWilliams, and M. J. Molemaker, 2017: Submesoscale dynamics in the northern Gulf of Mexico. Part III: Lagrangian implications. J. Phys. Oceanogr., 47, 23612376, https://doi.org/10.1175/JPO-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crone, T. J., and M. Tolstoy, 2010: Magnitude of the 2010 Gulf of Mexico oil leak. Science, 330, 634–634, doi:10.1126/science.1195840.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, doi:10.1016/j.pocean.2008.02.002.

  • Large, W. G., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, doi:10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, doi:10.1016/j.ocemod.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, A472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, doi:10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, doi:10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller-Karger, F. E., J. J. Walsh, R. H. Evans, and M. B. Meyers, 1991: On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J. Geophys. Res., 96, 12 64512 665, doi:10.1029/91JC00787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller-Karger, F. E., and Coauthors, 2015: Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr., 134, 5476, doi:10.1016/j.pocean.2014.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016a: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, doi:10.1175/JPO-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016b: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, doi:10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., 2015: An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Modell., 91, 3869, doi:10.1016/j.ocemod.2015.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, doi:10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2011: Accurate Boussinesq oceanic modeling with a practical, stiffened equation of state. Ocean Modell., 38, 4170, doi:10.1016/j.ocemod.2011.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheinbaum, J., J. Candela, A. Badan, and J. Ochoa, 2002: Flow structure and transport in the Yucatan Channel. Geophys. Res. Lett., 29, 1040, https://doi.org/10.1029/2001GL013990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1086 406 77
PDF Downloads 872 259 11