Submesoscale Dynamics in the Northern Gulf of Mexico. Part III: Lagrangian Implications

Jun Choi School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jun Choi in
Current site
Google Scholar
PubMed
Close
,
Annalisa Bracco School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Annalisa Bracco in
Current site
Google Scholar
PubMed
Close
,
Roy Barkan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Roy Barkan in
Current site
Google Scholar
PubMed
Close
,
Alexander F. Shchepetkin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Alexander F. Shchepetkin in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Jeroen M. Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jeroen M. Molemaker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four numerical simulations are used to characterize the impact of submesoscale circulations on surface Lagrangian statistics in the northern Gulf of Mexico over 2 months, February and August, representative of winter and summer. The role of resolution and riverine forcing is explored focusing on surface waters in regions where the water column is deeper than 50 m. Whenever submesoscale circulations are present, the probability density functions (PDFs) of dynamical quantities such as vorticity and horizontal velocity divergence for Eulerian and Lagrangian fields differ, with particles preferentially mapping areas of elevated negative divergence and positive vorticity. The stronger the submesoscale circulations are, the more skewed the Lagrangian distributions become, with greater differences between Eulerian and Lagrangian PDFs. In winter, Lagrangian distributions are modestly impacted by the presence of the riverine outflow, while increasing the model resolution from submesoscale permitting to submesoscale resolving has a more profound impact. In summer, the presence of riverine-induced buoyancy gradients is the key to the development of submesoscale circulations and different Eulerian and Lagrangian PDFs. Finite-size Lyapunov exponents (FSLEs) are used to characterize lateral mixing rates. Whenever submesoscale circulations are resolved and riverine outflow is included, FSLEs slopes are broadly consistent with local stirring. Simulated slopes are close to −0.5 and support a velocity field where the ageostrophic and frontogenetic components contribute stirring at scales between about 5 and 7 times the model resolution and 100 km. The robustness of Lagrangian statistics is further discussed in terms of their spatial and temporal variability and of the number of particles available.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annalisa Bracco, abracco@gatech.edu

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0035.1 and http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0040.1

Abstract

Four numerical simulations are used to characterize the impact of submesoscale circulations on surface Lagrangian statistics in the northern Gulf of Mexico over 2 months, February and August, representative of winter and summer. The role of resolution and riverine forcing is explored focusing on surface waters in regions where the water column is deeper than 50 m. Whenever submesoscale circulations are present, the probability density functions (PDFs) of dynamical quantities such as vorticity and horizontal velocity divergence for Eulerian and Lagrangian fields differ, with particles preferentially mapping areas of elevated negative divergence and positive vorticity. The stronger the submesoscale circulations are, the more skewed the Lagrangian distributions become, with greater differences between Eulerian and Lagrangian PDFs. In winter, Lagrangian distributions are modestly impacted by the presence of the riverine outflow, while increasing the model resolution from submesoscale permitting to submesoscale resolving has a more profound impact. In summer, the presence of riverine-induced buoyancy gradients is the key to the development of submesoscale circulations and different Eulerian and Lagrangian PDFs. Finite-size Lyapunov exponents (FSLEs) are used to characterize lateral mixing rates. Whenever submesoscale circulations are resolved and riverine outflow is included, FSLEs slopes are broadly consistent with local stirring. Simulated slopes are close to −0.5 and support a velocity field where the ageostrophic and frontogenetic components contribute stirring at scales between about 5 and 7 times the model resolution and 100 km. The robustness of Lagrangian statistics is further discussed in terms of their spatial and temporal variability and of the number of particles available.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annalisa Bracco, abracco@gatech.edu

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0035.1 and http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-17-0040.1

Save
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234, doi:10.5194/essd-2-215-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, doi:10.1063/1.869433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., 2013: Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn., 107, 526540, doi:10.1080/03091929.2012.740479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., J. C. McWilliams, A. F. Shchepetkin, M. J. Molemaker, L. Renault, A. Bracco, and J. Choi, 2017a: Submesoscale dynamics in the northern Gulf of Mexico. Part I: Regional and seasonal characterization and the role of river outflow. J. Phys. Oceanogr., 47, 23252346, https://doi.org/10.1175/JPO-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., J. C. McWilliams, M. J. Molemaker, J. Choi, K. Srinivasan, A. F. Shchepetkin, and A. Bracco, 2017b: Submesoscale dynamics in the northern Gulf of Mexico. Part II: Temperature–salinity compensation and cross-shelf transport processes. J. Phys. Oceanogr., 47, 23472360, https://doi.org/10.1175/JPO-D-17-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, doi:10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, doi:10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Choi, K. Joshi, H. Luo, and J. C. McWilliams, 2016: Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope. Ocean Modell., 101, 4358, doi:10.1016/j.ocemod.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardona, Y., A. Bracco, T. A. Villareal, A. Subramaniam, S. C. Weber, and J. P. Montoya, 2016: Highly variable nutrient concentrations in the northern Gulf of Mexico. Deep-Sea Res. II, 129, 2030, doi:10.1016/j.dsr2.2016.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., J. Isern-Fontanet, C. López, E. Hernández-García, and E. García-Ladona, 2009: Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian Basin. Deep-Sea Res. I, 56, 1531, doi:10.1016/j.dsr.2008.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, doi:10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, Z. D. Garraffo, and L. Piterbarg, 2012: Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Modell., 42, 3149, https://doi.org/10.1016/j.ocemod.2011.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, and P. Hogan, 2016: Impact of submesoscales on surface material distribution in a Gulf of Mexico mesoscale eddy. Ocean Modell., 107, 2847, doi:10.1016/j.ocemod.2016.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Lacorata, V. Rupolo, R. Santoleri, and A. Vulpiani, 2002: Sensitivity of numerical tracer trajectories to uncertainties in OGCM velocity fields. Ocean Modell., 4, 313325, doi:10.1016/S1463-5003(02)00006-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joye, S. B., I. R. MacDonald, I. Leifer, and V. Asper, 2011: Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat. Geosci., 4, 160164, doi:10.1038/ngeo1067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I., A. Bracco, J. C. McWilliams, and A. Provenzale, 2009: Dynamics of wind-forced coherent anticyclones in the open ocean. J. Geophys. Res., 114, C08011, https://doi.org/10.1029/2009JC005388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kullback, S., and R. A. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, doi:10.1214/aoms/1177729694.

  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Rivière, 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, doi:10.1016/j.ocemod.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: Fluid dynamics on the margin of rotational control. Environ. Fluid Mech., 8, 441449, https://doi.org/10.1007/s10652-008-9081-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, A472, 20160117, doi:10.1098/rspa.2016.0117.

  • McWilliams, J. C., F. Colas, and M. J. Molemaker, 2009: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett., 36, L18602, doi:10.1029/2009GL039402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. C. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, doi:10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced root to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R., and A. D. Kirwan Jr., 1975: Calculations of differential kinematic properties from Lagrangian observations in the western Caribbean Sea. J. Phys. Oceanogr., 5, 483491, doi:10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., P. M. Poulain,and L. R. Haury, 1989: Synoptic three-dimensional circulation in an onshore-flowing filament of the California Current. Deep-Sea Res. I, 36A, 385–391, 393–405, https://doi.org/10.1016/0198-0149(89)90043-5.

    • Search Google Scholar
    • Export Citation
  • North, E. W., E. E. Adams, Z. Schlag, C. R. Sherwood, R. He, K. H. Hyun, and S. Socolofsky, 2011: Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 217–226.

    • Crossref
    • Export Citation
  • Okubo, A., C. C. Ebbesmeyer, and J. M. Helseth, 1976: Determination of Lagrangian deformations from analysis of current followers. J. Phys. Oceanogr., 6, 524527, doi:10.1175/1520-0485(1976)006<0524:DOLDFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and P. P. Niiler, 1990: A Lagrangian description of motion in northern California coastal transition filaments. J. Geophys. Res., 95, 18 09518 109, doi:10.1029/JC095iC10p18095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., A. C. Haza, T. M. Özgökmen, M. G. Magaldi, and Z. D. Garraffo, 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 3650, https://doi.org/10.1016/j.ocemod.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, A110, 709737, https://doi.org/10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Righi, D. D., and P. T. Strub, 2001: The use of simulated drifters to estimate vorticity. J. Mar. Syst., 29, 125140, doi:10.1016/S0924-7963(01)00013-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212, https://doi.org/10.1112/plms/s2-20.1.196.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Visser, A. W., 1997: Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Prog. Ser., 158, 275281, doi:10.3354/meps158275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., and Coauthors, 2011: Impacts of Loop Current frontal cyclonic eddies and wind forcing on the 2010 Gulf of Mexico oil spill. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 103–116.

    • Crossref
    • Export Citation
  • Zhong, Y., and A. Bracco, 2013: Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 56515668, doi:10.1002/jgrc.20402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., A. Bracco, and T. Villareal, 2012: Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnol. Oceanogr. Fluids Environ., 2, 1227, doi:10.1215/21573689-1573372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., A. Bracco, J. Tian, J. Dong, W. Zhao, and Z. Zhang, 2017: Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Sci. Rep., 7, 44011, https://doi.org/10.1038/srep44011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 723 224 20
PDF Downloads 544 122 9