Comments on “A Combined Derivation of the Integrated and Vertically Resolved, Coupled Wave–Current Equations”

Fabrice Ardhuin Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, Ifremer, IRD, Plouzané, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
,
Nobuhiro Suzuki Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, Ifremer, IRD, Plouzané, France

Search for other papers by Nobuhiro Suzuki in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los, Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Hidenori Aiki Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi, Japan

Search for other papers by Hidenori Aiki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several equivalent equations for the evolution of the wave-averaged current momentum have been proposed, implemented, and used. In contrast, the equation for the total momentum, which is the sum of the current and wave momenta, has not been widely used because it requires a less practical wave forcing. In an update on previous derivations, Mellor proposed a new formulation of the wave forcing for the total momentum equation. Here, the authors show that this derivation misses a leading-order term that has a zero depth-integrated value. Corrected for this omission, the wave forcing is equivalent to that in the first paper by Mellor. When this wave forcing effect on the currents is approximated it leads to an inconsistency. This study finally repeats and clarifies that the vertical integration of several various forms of the current-only momentum equations are consistent with the known depth-integrated equations for the mean flow momentum obtained by subtracting the wave momentum equation from the total momentum equation. Several other claims in prior Mellor manuscripts are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fabrice Ardhuin, ardhuin@ifremer.fr

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0112.1.

Abstract

Several equivalent equations for the evolution of the wave-averaged current momentum have been proposed, implemented, and used. In contrast, the equation for the total momentum, which is the sum of the current and wave momenta, has not been widely used because it requires a less practical wave forcing. In an update on previous derivations, Mellor proposed a new formulation of the wave forcing for the total momentum equation. Here, the authors show that this derivation misses a leading-order term that has a zero depth-integrated value. Corrected for this omission, the wave forcing is equivalent to that in the first paper by Mellor. When this wave forcing effect on the currents is approximated it leads to an inconsistency. This study finally repeats and clarifies that the vertical integration of several various forms of the current-only momentum equations are consistent with the known depth-integrated equations for the mean flow momentum obtained by subtracting the wave momentum equation from the total momentum equation. Several other claims in prior Mellor manuscripts are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fabrice Ardhuin, ardhuin@ifremer.fr

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0112.1.

Save
  • Aiki, H., and R. J. Greatbatch, 2012: Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725747, doi:10.1175/JPO-D-11-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2013: The vertical structure of the surface wave radiation stress for circulation over a sloping bottom as given by thickness-weighted-mean theory. J. Phys. Oceanogr., 43, 149164, doi:10.1175/JPO-D-12-059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2014: A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper-ocean circulation. J. Phys. Oceanogr., 44, 323, doi:10.1175/JPO-D-12-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978a: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, doi:10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978b: On wave action and its relatives. J. Fluid Mech., 89, 647664, doi:10.1017/S0022112078002785; Corrigendum, 95, 796, doi:10.1017/S0022112079001737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., 2006: On the momentum balance in shoaling gravity waves: Comment on ‘Shoaling surface gravity waves cause a force and a torque on the bottom’ by K. E. Kenyon. J. Oceanogr., 62, 917922, doi:10.1007/s10872-006-0109-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., A. D. Jenkins, and K. Belibassakis, 2008a: Comments on “The three-dimensional current and surface wave equations.” J. Phys. Oceanogr., 38, 13401349, doi:10.1175/2007JPO3670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., N. Rascle, and K. A. Belibassakis, 2008b: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20, 3560, doi:10.1016/j.ocemod.2007.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athanassoulis, G. A., and K. A. Belibassakis, 1999: A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech., 389, 275301, doi:10.1017/S0022112099004978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennis, A.-C., F. Ardhuin, and F. Dumas, 2011: On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Modell., 40, 260272, doi:10.1016/j.ocemod.2011.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekera, C. N., and K. F. Cheung, 1997: Extended linear refraction-diffraction model. J. Waterw. Port Coastal Ocean Eng., 123, 280286, doi:10.1061/(ASCE)0733-950X(1997)123:5(280).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delpey, M. T., F. Ardhuin, P. Otheguy, and A. Jouon, 2014: Effects of waves on coastal water dispersion in a small estuarine bay. J. Geophys. Res. Oceans, 119, 7086, doi:10.1002/2013JC009466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1976: Generation of Langmuir circulations by surface waves—A feedback mechanism. J. Mar. Res., 34, 117130.

  • Holm, D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, doi:10.1016/0167-2789(96)00105-4.

  • Lagrange, J. L., 1788: Mécanique Analytique. La Veuve Desaint, 512 pp.

  • Lamb, H., 1932: Hydrodynamics. 6th ed. Cambridge University Press, 738 pp.

  • Lane, E. M., J. M. Restrepo, and J. C. McWilliams, 2007: Wave–current interaction: A comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr., 37, 11221141, doi:10.1175/JPO3043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1980: On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99, 715724, doi:10.1017/S0022112080000857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stresses and mass transport in gravity waves, with application to ‘surf beats.’ J. Fluid Mech., 13, 481504, doi:10.1017/S0022112062000877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, doi:10.1017/S0022112004009358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2003: The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, 19781989, doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2; Corrigendum, 35, 2304, doi:10.1175/JPO2827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2005: Some consequences of the three-dimensional current and surface wave equations. J. Phys. Oceanogr., 35, 22912298, doi:10.1175/JPO2794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2015: A combined derivation of the integrated and vertically resolved, coupled wave–current equations. J. Phys. Oceanogr., 45, 14531463, doi:10.1175/JPO-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2016: On theories dealing with the interaction of surface waves and ocean circulation. J. Geophys. Res. Oceans, 121, 44744486, doi:10.1002/2016JC011768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaud, H., P. Marsaleix, Y. Leredde, C. Estournel, F. Bourrin, F. Lyard, C. Mayet, and F. Ardhuin, 2012: Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf. Ocean Sci., 8, 657681, doi:10.5194/os-8-657-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., R. Medina, and S. Castanedo, 2010: Effects of wave–current interaction on the current profile. Coastal Eng., 57, 643655, doi:10.1016/j.coastaleng.2010.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Phillips, W. R. C., 2001: On the pseudomomentum and generalized Stokes drift in a spectrum of rotational waves. J. Fluid Mech., 430, 209229, doi:10.1017/S0022112000002858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, W. R. C., A. Dai, and K. K. Tjan, 2010: On Lagrangian drift in shallow-water waves on moderate shear. J. Fluid Mech., 660, 221239, doi:10.1017/S0022112010002648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., Jr., 1962: Perturbation analysis of the Navier-Stokes equations in Lagrangian form with selected linear solutions. J. Geophys. Res., 67, 31513160, doi:10.1029/JZ067i008p03151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., 2007: Impact des vagues sur la circulation océanique (Impact of waves on the ocean circulation). Ph.D. thesis, Université de Bretagne Occidentale, 226 pp. [Available online at http://tel.archives-ouvertes.fr/tel-00182250/.]

  • Rivero, F. J., and A. S. Arcilla, 1995: On the vertical-distribution of 〈ũw̃〉. Coastal Eng., 25, 137152, doi:10.1016/0378-3839(95)00008-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, doi:10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2006: Wave–current interactions in finite depth. J. Phys. Oceanogr., 36, 14031419, doi:10.1175/JPO2911.1.

  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, doi:10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, doi:10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and J. M. Restrepo, 2009: Wave-current interaction in nearshore shear instability analyzed with a vortex force formalism. J. Geophys. Res., 114, C06021, doi:10.1029/2008JC005135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, doi:10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, J. E., G. Broström, and O. Saetra, 2006: Eulerian versus Lagrangian approaches to the wave-induced transport in the upper ocean. J. Phys. Oceanogr., 36, 21062118, doi:10.1175/JPO2951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weir, B., Y. Uchiyama, E. M. Lane, J. M. Restrepo, and J. C. McWilliams, 2011: A vortex force analysis of the interaction of rip currents and surface gravity waves. J. Geophys. Res., 116, C05001, doi:10.1029/2010JC006232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Q.-P., A. J. Bowen, and A. E. Hay, 2006: Vertical distribution of wave shear stress in variable water depth: Theory and field observations. J. Geophys. Res., 111, C09032, doi:10.1029/2005JC003300.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 634 131 1
PDF Downloads 217 46 0