Eddies Observed by Argo Floats. Part II: Form Stress and Streamline Length in the Southern Ocean

Katsuro Katsumata Research and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Katsuro Katsumata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Argo floats measure horizontal current velocities at the parking depth and vertical profiles of temperature and salinity. These data were used to study the roles that eddies play in the dynamics of the Antarctic Circumpolar Current (ACC) in the Southern Ocean. A zonal momentum budget was quantified in a box spanning the latitudes of the Drake Passage and bounded by the sea surface and the 1000-dbar depth. The input of eastward zonal momentum from the wind (17.1 × 1011 N) was approximately twice the downward transfer of eastward momentum across the isopycnal whose mean depth was 1000 dbar, which was mediated via form stress carried by eddies [(8.1 ± 1.9) × 1011 N]. The zonal momentum budget was closed to within uncertainty, meaning that the momentum not accounted for by eddies was explained by the Coriolis term associated with meridional transport. The form stress was spatially concentrated near meridional ridges, particularly on their eastern flanks. The localization was extreme: 7% of the total area contributed about 90% of the form stress. Lengths of streamlines were stretched around steady standing meanders. Seven major meanders were found at large topographic barriers along the ACC, with cyclonic meander collocated with the peaks of the topographic barriers. Eddies were found to lengthen the streamlines mostly on the eastern flanks of the meridional ridges, where the eddy transport was southward. Poleward eddy transport on the eastern flanks of meridional ridges is thus highlighted in the ACC dynamics in transferring eastward zonal momentum downward and in adjusting to wind changes by stretching streamlines.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katsuro Katsumata, k.katsumata@jamstec.go.jp

Abstract

Argo floats measure horizontal current velocities at the parking depth and vertical profiles of temperature and salinity. These data were used to study the roles that eddies play in the dynamics of the Antarctic Circumpolar Current (ACC) in the Southern Ocean. A zonal momentum budget was quantified in a box spanning the latitudes of the Drake Passage and bounded by the sea surface and the 1000-dbar depth. The input of eastward zonal momentum from the wind (17.1 × 1011 N) was approximately twice the downward transfer of eastward momentum across the isopycnal whose mean depth was 1000 dbar, which was mediated via form stress carried by eddies [(8.1 ± 1.9) × 1011 N]. The zonal momentum budget was closed to within uncertainty, meaning that the momentum not accounted for by eddies was explained by the Coriolis term associated with meridional transport. The form stress was spatially concentrated near meridional ridges, particularly on their eastern flanks. The localization was extreme: 7% of the total area contributed about 90% of the form stress. Lengths of streamlines were stretched around steady standing meanders. Seven major meanders were found at large topographic barriers along the ACC, with cyclonic meander collocated with the peaks of the topographic barriers. Eddies were found to lengthen the streamlines mostly on the eastern flanks of the meridional ridges, where the eddy transport was southward. Poleward eddy transport on the eastern flanks of meridional ridges is thus highlighted in the ACC dynamics in transferring eastward zonal momentum downward and in adjusting to wind changes by stretching streamlines.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katsuro Katsumata, k.katsumata@jamstec.go.jp
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1998: Preliminary results from directly measuring middepth circulation in the tropical and South Pacific. J. Geophys. Res., 103, 24 61924 639, doi:10.1029/98JC01913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683707, doi:10.1175/JPO2702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648, doi:10.2307/2685844.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., T. K. Chereskin, D. R. Watts, and M. R. Mazloff, 2016: Bottom pressure torque and the vorticity balance from observations in Drake Passage. J. Geophys. Res. Oceans, 121, 42824302, doi:10.1002/2016JC011682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., A. M. de Boer, K. J. Heywood, M. R. Chapman, and D. P. Stevens, 2012: Southern Ocean fronts: Controlled by wind or topography? J. Geophys. Res., 117, C08018, doi:10.1029/2012jc007887.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., and J. R. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645, doi:10.1175/JPO2934.1.

  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004jc002753.

  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., 2016: Eddies observed by Argo floats. Part I: Eddy transport in the upper 1000 dbar. J. Phys. Oceanogr., 46, 34713486, doi:10.1175/JPO-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at the parking level. J. Oceanogr., 66, 553569, doi:10.1007/s10872-010-0046-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1992: An equivalent-barotropic mode in the Fine Resolution Antarctic Model. J. Phys. Oceanogr., 22, 13791387, doi:10.1175/1520-0485(1992)022<1379:AEBMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. S., and A. H. Orsi, 2014: On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr., 44, 30543071, doi:10.1175/JPO-D-13-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klatt, O., O. Boebel, and E. Fahrbach, 2007: A profiling float’s sense of ice. J. Atmos. Oceanic Technol., 24, 13011308, doi:10.1175/JTECH2026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. LaCasce, and S. T. Merrifield, 2012: Reconciling float-based and tracer-based estimates of lateral diffusivities. J. Mar. Res., 70, 569602, doi:10.1357/002224012805262743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp.

  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487, doi:10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean State Estimate. J. Geophys. Res. Oceans, 120, 79197933, doi:10.1002/2015JC011143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, doi:10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and N. L. Bindoff, 2014: On the nonequivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective. J. Geophys. Res. Oceans, 119, 52215243, doi:10.1002/2013JC009516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, doi:10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, doi:10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, doi:10.1175/JPO3111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951, doi:10.1002/qj.49712354008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett., 39, L18604, doi:10.1029/2012gl053099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, doi:10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, doi:10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, doi:10.1016/j.ocemod.2011.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the circumpolar current. J. Phys. Oceanogr., 26, 22972301, doi:10.1175/1520-0485(1996)026<2297:OTOPOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., J. Le Sommer, C. O. Dufour, A. Naveira-Garabato, and A. Blaker, 2013: Acceleration of the Antarctic Circumpolar Current by wind stress along the coast of Antarctica. J. Phys. Oceanogr., 43, 27722784, doi:10.1175/JPO-D-13-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 74 4
PDF Downloads 190 50 5