• Aagaard, K., 1989: A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 188, 1122.

  • Aagaard, K., L. Coachman, and E. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28A, 529545, https://doi.org/10.1016/0198-0149(81)90115-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindschadler, R., 2006: Hitting the ice sheets where it hurts. Science, 311, 17201721, https://doi.org/10.1126/science.1125226.

  • Cai, C., E. Rignot, D. Menemenlis, and Y. Nakayama, 2017: Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland. Geophys. Res. Lett., 44, 83968403, https://doi.org/10.1002/2017GL073711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., and Coauthors, 1997: Changes in temperature and tracer distributions within the Arctic Ocean: Results from the 1994 Arctic Ocean section. Deep-Sea Res. II, 44, 14871502, https://doi.org/10.1016/S0967-0645(97)00056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christoffersen, P., R. Mugford, K. Heywood, I. Joughin, J. Dowdeswell, J. Syvitski, A. Luckman, and T. Benham, 2011: Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5, 701714, https://doi.org/10.5194/tc-5-701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and W. S. B. Paterson, 2010: The Physics of Glaciers. 4th ed. Elsevier, 704 pp.

  • de Steur, L., and Coauthors, 2013: Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010. J. Geophys. Res. Oceans, 118, 46994715, https://doi.org/10.1002/jgrc.20341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, M., 1973: Ice regime and ice transport in Nares Strait. Arctic, 26, 282291, https://doi.org/10.14430/arctic2927.

  • Enderlin, E. M., I. M. Howat, S. Jeong, M. J. Noh, J. H. Angelen, and M. R. van den Broeke, 2014: An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett., 41, 866872, https://doi.org/10.1002/2013GL059010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and H. J. Freeland, 1983: The physical oceanography of fjords. Prog. Oceanogr., 12, 147219, https://doi.org/10.1016/0079-6611(83)90004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and H. Bryden, 1975: Specific gravity and density of seawater at atmospheric pressure. J. Mar. Res., 33, 6982.

  • Fujino, K., E. Lewis, and R. Perkin, 1974: The freezing point of seawater at pressures up to 100 bars. J. Geophys. Res., 79, 17921797, https://doi.org/10.1029/JC079i012p01792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Gogineni, S., and Coauthors, 2001: Coherent radar ice thickness measurements over the Greenland Ice Sheet. J. Geophys. Res., 106, 33 76133 772, https://doi.org/10.1029/2001JD900183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, H. J., 1904: Experimental determination of the relation between the freezing point of sea-water and its specific gravity at 0°C. Medd. Komm. Havunders. Ser. Hydrogr., 1 (2), 110.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., A. Wåhlin, H. L. Johnson, and A. Münchow, 2017: Pathways of meltwater export from Petermann Glacier, Greenland. J. Phys. Oceanogr., 47, 405418, https://doi.org/10.1175/JPO-D-16-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. E., A. Shepherd, N. Gourmelen, and M. Engdahl, 2016: Grounding line migration from 1992 to 2011 on Petermann Glacier, north-west Greenland. J. Glaciol., 62, 11041114, https://doi.org/10.1017/jog.2016.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664, https://doi.org/10.1038/ngeo316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, https://doi.org/10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H., A. Münchow, K. Falkner, and H. Melling, 2011: Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res., 116, C01003, https://doi.org/10.1029/2010JC006519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanzow, T., U. Send, W. Zenk, A. D. Chave, and M. Rhein, 2006: Monitoring the integrated deep meridional flow in the tropical North Atlantic: Long-term performance of a geostrophic array. Deep-Sea Res. I, 53, 528546, https://doi.org/10.1016/j.dsr.2005.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W., and Coauthors, 2002: Aircraft laser altimetry measurement of elevation changes of the Greenland Ice Sheet: Technique and accuracy assessment. J. Geodyn., 34, 357376, https://doi.org/10.1016/S0264-3707(02)00040-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2005: Variability of Nares Strait ice flux. Geophys. Res. Lett., 32, L24502, https://doi.org/10.1029/2005GL024768.

  • Macdonald, G. J., A. F. Banwell, and D. R. MacAyeal, 2018: Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol., 59, 5665, https://doi.org/10.1017/aog.2018.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makinson, K., and P. G. Anker, 2014: The BAS ice-shelf hot-water drill: Design, methods and tools. Ann. Glaciol., 55, 4452, https://doi.org/10.3189/2014AoG68A030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG Rep., 28 pp.

  • McLaughlin, F., E. Carmack, R. Macdonald, A. J. Weaver, and J. Smith, 2002: The Canada Basin, 1989–1995: Upstream events and far-field effects of the Barents Sea. J. Geophys. Res., 107, 3082, https://doi.org/10.1029/2001JC000904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, R., 1974: Comments on “Seasonal variability of the Florida Current” by Niiler and Richardson. J. Mar. Res., 32, 533535.

    • Search Google Scholar
    • Export Citation
  • Mortensen, J., K. Lennert, J. Bendtsen, and S. Rysgaard, 2011: Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res., 116, C01013, https://doi.org/10.1029/2010JC006528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouginot, J., E. Rignot, B. Scheuchl, I. Fenty, A. Khazendar, M. Morlighem, A. Buzzi, and J. Paden, 2015: Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science, 350, 13571361, https://doi.org/10.1126/science.aac7111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., K. K. Falkner, H. Melling, B. Rabe, and H. L. Johnson, 2011: Ocean warming of Nares Strait bottom waters off northwest Greenland 2003–2009. Oceanography, 24 (3), 114123, https://doi.org/10.5670/oceanog.2011.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., L. Padman, and H. A. Fricker, 2014: Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol., 60, 489499, https://doi.org/10.3189/2014JoG13J135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., K. K. Falkner, and H. Melling, 2015: Baffin Island and West Greenland current systems in northern Baffin Bay. Prog. Oceanogr., 132, 305317, https://doi.org/10.1016/j.pocean.2014.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., L. Padman, P. Washam, and K. W. Nicholls, 2016: The ice shelf of Petermann Gletscher, North Greenland, and its connection to the Arctic and Atlantic Oceans. Oceanography, 29 (4), 8495, https://doi.org/10.5670/oceanog.2016.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nick, F. M., A. Vieli, M. L. Andersen, I. Joughin, A. Payne, T. L. Edwards, F. Pattyn, and R. S. van de Wal, 2013: Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497, 235238, https://doi.org/10.1038/nature12068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor, 2012: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, https://doi.org/10.1029/2011JB008916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., and P. P. Niiler, 1989: Statistical analysis of the surface circulation in the California Current System using satellite-tracked drifters. J. Phys. Oceanogr., 19, 15881603, https://doi.org/10.1175/1520-0485(1989)019<1588:SAOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990, https://doi.org/10.1126/science.1121381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and K. Steffen, 2008: Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35, L02503, https://doi.org/10.1029/2007GL031765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Gogineni, I. Joughin, and W. Krabill, 2001: Contribution to the glaciology of northern Greenland from satellite radar interferometry. J. Geophys. Res., 106, 34 00734 019, https://doi.org/10.1029/2001JD900071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., M. Koppes, and I. Velicogna, 2010: Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3, 187191, https://doi.org/10.1038/ngeo765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Jones, L. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

    • Crossref
    • Export Citation
  • Ryan, P. A., and A. Münchow, 2017: Sea ice draft observations in Nares Strait from 2003 to 2012. J. Geophys. Res. Oceans, 122, 30573080, https://doi.org/10.1002/2016JC011966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, H. E., 1976: Water, heat, and salt transports through Nares Strait, Ellesmere Island. J. Fish. Res. Board Can., 33, 22862295, https://doi.org/10.1139/f76-275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E., L. Padman, R. Samelson, A. Münchow, and L. Stearns, 2017: Seasonal control of Petermann Gletscher ice-shelf melt by the ocean’s response to sea-ice cover in Nares Strait. J. Glaciol., 63, 324330, https://doi.org/10.1017/jog.2016.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, https://doi.org/10.1029/2003JC002009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, https://doi.org/10.1038/nature12854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, https://doi.org/10.1146/annurev-marine-010213-135133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci., 3, 182186, https://doi.org/10.1038/ngeo764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. G. Curry, D. A. Sutherland, G. S. Hamilton, C. Cenedese, K. Våge, and L. A. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327, https://doi.org/10.1038/ngeo1109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and Coauthors, 2012: Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol., 53, 202210, https://doi.org/10.3189/2012AoG60A059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, and B. Wouters, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986, https://doi.org/10.1126/science.1178176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wåhlin, A., X. Yuan, G. Björk, and C. Nohr, 2010: Inflow of warm Circumpolar Deep Water in the central Amundsen shelf. J. Phys. Oceanogr., 40, 14271434, https://doi.org/10.1175/2010JPO4431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 4 4 4

A Decade of Ocean Changes Impacting the Ice Shelf of Petermann Gletscher, Greenland

View More View Less
  • 1 College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware
  • | 2 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
Restricted access

Abstract

Hydrographic data collected during five summer surveys between 2002 and 2015 reveal that the subsurface ocean near Petermann Gletscher, Greenland, warmed by 0.015° ± 0.013°C yr−1. New 2015–16 mooring data from beneath Petermann Gletscher’s ice shelf imply a continued warming of 0.025° ± 0.013°C yr−1 with a modest seasonal signal. In 2015, we measured ocean temperatures of 0.28°C near the grounding line of Petermann Gletscher’s ice shelf, which drove submarine melting along the base of the glacier. The resultant meltwater contributed to ocean stratification, which forced a stronger geostrophic circulation at the ice shelf terminus compared with previous years. This increased both the freshwater flux away from the sub–ice shelf cavity and the heat flux into it. Net summertime geostrophic heat flux estimates into the sub–ice shelf cavity exceed the requirement for steady-state melting of Petermann Gletscher’s ice shelf. Likewise, freshwater fluxes away from the glacier exceed the expected steady-state meltwater discharge. These results suggest that the warmer, more active ocean surrounding Petermann Gletscher forces “non steady state” melting of its ice shelf. When sustained, such melting thins the ice shelf.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. Washam, pwasham@udel.edu

Abstract

Hydrographic data collected during five summer surveys between 2002 and 2015 reveal that the subsurface ocean near Petermann Gletscher, Greenland, warmed by 0.015° ± 0.013°C yr−1. New 2015–16 mooring data from beneath Petermann Gletscher’s ice shelf imply a continued warming of 0.025° ± 0.013°C yr−1 with a modest seasonal signal. In 2015, we measured ocean temperatures of 0.28°C near the grounding line of Petermann Gletscher’s ice shelf, which drove submarine melting along the base of the glacier. The resultant meltwater contributed to ocean stratification, which forced a stronger geostrophic circulation at the ice shelf terminus compared with previous years. This increased both the freshwater flux away from the sub–ice shelf cavity and the heat flux into it. Net summertime geostrophic heat flux estimates into the sub–ice shelf cavity exceed the requirement for steady-state melting of Petermann Gletscher’s ice shelf. Likewise, freshwater fluxes away from the glacier exceed the expected steady-state meltwater discharge. These results suggest that the warmer, more active ocean surrounding Petermann Gletscher forces “non steady state” melting of its ice shelf. When sustained, such melting thins the ice shelf.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. Washam, pwasham@udel.edu
Save