• Bacon, S., and P. M. Saunders, 2010: The deep western boundary current at Cape Farewell: Results from a moored current meter array. J. Phys. Oceanogr., 40, 815829, https://doi.org/10.1175/2009JPO4091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, S., A. Marshall, N. P. Holliday, Y. Aksenov, and S. R. Dye, 2014: Seasonal variability of the East Greenland Coastal Current. J. Geophys. Res. Oceans, 119, 39673987, https://doi.org/10.1002/2013JC009279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, D. A., P. B. Rhines, and S. Häkkinen, 2005: Formation and pathways of North Atlantic Deep Water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans. Climate Dyn., 25, 497516, https://doi.org/10.1007/s00382-005-0050-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brambilla, E., L. D. Talley, and P. E. Robbins, 2008: Subpolar mode water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res., 113, C04026, https://doi.org/10.1029/2006JC004063.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, L. Czeschel, C. Eden, and C. Böning, 2007: Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current. J. Phys. Oceanogr., 37, 946961, https://doi.org/10.1175/JPO3044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkholder, K., and S. Lozier, 2014: Tracing the pathways of the upper limb of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 41, 42544260, https://doi.org/10.1002/2014GL060226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Z. D. Garraffo, 2001: Viscosity parameterization and the Gulf Stream separation. From Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 37–41.

  • Chassignet, E. P., and X. Xu, 2017: Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability. J. Phys. Oceanogr., 47, 19992021, https://doi.org/10.1175/JPO-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulation with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference density, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2006: Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts. Oceanography, 19 (1), 118129, https://doi.org/10.5670/oceanog.2006.95.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R., H. Hill, R. Reiniger, and B. Warren, 1980: Current system south and east of the Grand Banks of Newfoundland. J. Phys. Oceanogr., 10, 2565, https://doi.org/10.1175/1520-0485(1980)010<0025:CSSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, F. Schott, and J. Lazier, 2005: Convection above the Labrador continental slope. J. Phys. Oceanogr., 35, 489511, https://doi.org/10.1175/JPO2700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, https://doi.org/10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and C. W. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, https://doi.org/10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., and Coauthors, 2017: Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr., 47, 633647, https://doi.org/10.1175/JPO-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34, 15481570, https://doi.org/10.1175/1520-0485(2004)034<1548:BCATEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., M. Visbeck, R. Zantopp, and N. Nunes, 2010: Interannual to decadal variability of outflow from the Labrador Sea. Geophys. Res. Lett., 37, L24610, https://doi.org/10.1029/2010GL045321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. W. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a Z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, R. Marsh, Y. O. Kwon, R. J. Bingham, and A. T. Blaker, 2014: The surface-forced overturning of the North Atlantic: Estimates from modern era atmospheric reanalysis datasets. J. Climate, 27, 35963618, https://doi.org/10.1175/JCLI-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, https://doi.org/10.1029/2010JC006275.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., D. J. Torres, and I. Yashayaev, 2013: Absolute velocity along the AR7W section in the Labrador Sea. Deep-Sea Res. I, 72, 7287, https://doi.org/10.1016/j.dsr.2012.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Østerhus, 2000: North Atlantic–Nordic seas exchanges. Prog. Oceanogr., 45, 109208, https://doi.org/10.1016/S0079-6611(99)00052-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, https://doi.org/10.1175/2007JPO3567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilicak, M., 2016: Quantifying spatial distribution of spurious mixing in ocean models. Ocean Modell., 108, 3038, https://doi.org/10.1016/j.ocemod.2016.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilicak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 3758, https://doi.org/10.1016/j.ocemod.2011.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, https://doi.org/10.1175/2007JPO3464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27, 22762287, https://doi.org/10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, https://doi.org/10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., P. Schlosser, and M. Visbeck, 2002: Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations. J. Phys. Oceanogr., 32, 666686, https://doi.org/10.1175/1520-0485(2002)032<0666:RAMOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langehaug, H. R., P. B. Rhines, T. Eldevik, J. Mignot, and K. Lohmann, 2012: Water mass transformation and the North Atlantic Current in three multicentury climate model simulations. J. Geophys. Res., 117, C11001, https://doi.org/10.1029/2012JC008021.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBel, D. A., and Coauthors, 2008: The formation rate of North Atlantic Deep Water and eighteen degree water calculated from CFC-11 inventories observed during WOCE. Deep-Sea Res. I, 55, 891910, https://doi.org/10.1016/j.dsr.2008.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A., I. Yashayaev, and J. M. Toole, 2017: Tracking Labrador Sea water property signals along the deep western boundary current. J. Geophys. Res. Oceans, 122, 53485366, https://doi.org/10.1002/2017JC012921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29, 20652098, https://doi.org/10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, https://doi.org/10.1016/j.pocean.2003.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, S. M., and Coauthors, 2017: Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. G. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33, 19021920, https://doi.org/10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., K. G. Speer, and K. P. Koltermann, 2008: Transport across 48°N in the Atlantic Ocean. J. Phys. Oceanogr., 38, 733752, https://doi.org/10.1175/2007JPO3636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13, 32393260, https://doi.org/10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., S. A. Josey, A. J. G. Nurser, B. A. de Cuevas, and A. C. Coward, 2005: Water mass transformation in the North Atlantic over 1985-2002 simulated in an eddy-permitting model. Ocean Sci., 1, 127144, https://doi.org/10.5194/os-1-127-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 1998: The Labrador Sea deep convection experiment. Bull. Amer. Meteor. Soc., 79, 20332058, https://doi.org/10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 268°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and L. D. Talley, 1982: The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr., 12, 11691188, https://doi.org/10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonagh, E., and Coauthors, 2015: Continuous estimate of Atlantic oceanic freshwater flux at 26.58°N. J. Climate, 28, 88888906, https://doi.org/10.1175/JCLI-D-14-00519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660, https://doi.org/10.1175/1520-0485(1996)026<1655:IAATRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertens, C., M. Rhein, M. Walter, C. W. Boning, E. Behrens, D. Kieke, R. Steinfeldt, and U. Stober, 2014: Circulation and transports in the Newfoundland Basin, western subpolar North Atlantic. J. Geophys. Res. Oceans, 119, 77727793, https://doi.org/10.1002/2014JC010019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and C. Garrett, 2002: From stirring to mixing in a stratified ocean. Oceanography, 15 (3), 1219, https://doi.org/10.5670/oceanog.2002.10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, https://doi.org/10.1175/JPO3178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res. I, 44, 10251054, https://doi.org/10.1016/S0967-0637(96)00122-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. T. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, https://doi.org/10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., F. Straneo, and G. W. K. Moore, 2003a: Is Labrador Sea Water formed in the Irminger Basin? Deep-Sea Res. I, 50, 2352, https://doi.org/10.1016/S0967-0637(02)00134-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003b: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152156, https://doi.org/10.1038/nature01729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and P. S. Fratantoni, 2005: The East Greenland spill jet. J. Phys. Oceanogr., 35, 10371053, https://doi.org/10.1175/JPO2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, https://doi.org/10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosmond, T., J. Teixeira, M. Peng, T. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15 (1), 99108, https://doi.org/10.5670/oceanog.2002.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousset, C., M.-N. Houssais, and E. P. Chassignet, 2009: A multi-model study of the restratification phase in an idealized convection basin. Ocean Modell., 26, 115133, https://doi.org/10.1016/j.ocemod.2008.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 2001: The dense northern overflows. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 401–417.

    • Crossref
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper‐ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, https://doi.org/10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., L. Stramma, R. Zantopp, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34, 817843, https://doi.org/10.1175/1520-0485(2004)034<0817:CADEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp, 2006: Variability of the deep western boundary current east of the Grand Banks. Geophys. Res. Lett., 33, L21S07, https://doi.org/10.1029/2006GL026563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. T., E. P. Chassignet, and R. Bleck, 2000: The impact of lateral boundary conditions and horizontal resolution on North Atlantic water mass transformations and pathways in an isopycnic coordinate ocean model. J. Phys. Oceanogr., 30, 137159, https://doi.org/10.1175/1520-0485(2000)030<0137:TIOLBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., H. J. Isemer, and A. Biastoch, 1995: Water mass formation from revised COADS data. J. Phys. Oceanogr., 25, 24442457, https://doi.org/10.1175/1520-0485(1995)025<2444:WMFFRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beisman, and C. Boening, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774, https://doi.org/10.1175/JPO2720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • von Appen, W.-J., and Coauthors, 2014: The East Greenland Spill Jet as an important component of the Atlantic meridional overturning circulation. Deep-Sea Res. I, 92, 7584, https://doi.org/10.1016/j.dsr.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, M., C. Mertens, and M. Rhein, 2005: Mixing estimates from a large-scale hydro-graphic survey in the North Atlantic. Geophys. Res. Lett., 32, L13605, https://doi.org/10.1029/2005GL022471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Schmitz Jr., H. E. Hurlburt, P. J. Hogan, and E. P. Chassignet, 2010: Transport of Nordic seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations. J. Geophys. Res., 115, C12048, https://doi.org/10.1029/2010JC006351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., P. B. Rhines, E. P. Chassignet, and W. J. Schmitz Jr., 2015: Spreading of the Denmark Strait overflow water in the western subpolar North Atlantic: Insights from eddy-resolving simulations with a passive tracer. J. Phys. Oceanogr., 45, 29132932, https://doi.org/10.1175/JPO-D-14-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., P. B. Rhines, and E. P. Chassignet, 2016: Temperature–salinity structure of the North Atlantic circulation and associated heat and freshwater transports. J. Climate, 29, 77237742, https://doi.org/10.1175/JCLI-D-15-0798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, https://doi.org/10.1016/j.pocean.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 13 13 13

On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean

View More View Less
  • 1 Center for Ocean–Atmosphere Prediction Studies, Florida State University, Tallahassee, Florida
  • | 2 University of Washington, Seattle, Washington
  • | 3 Center for Ocean–Atmosphere Prediction Studies, Florida State University, Tallahassee, Florida
Restricted access

Abstract

Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally—the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 4 October 2018 to include the designation that it belongs to the Process-Oriented Model Diagnostics special collection.

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Xiaobiao Xu, xxu@coaps.fsu.edu

Abstract

Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally—the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 4 October 2018 to include the designation that it belongs to the Process-Oriented Model Diagnostics special collection.

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Xiaobiao Xu, xxu@coaps.fsu.edu
Save