• Ardhuin, F., and Coauthors, 2012: Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr., 42, 21012120, https://doi.org/10.1175/JPO-D-11-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 45004517, https://doi.org/10.1002/2016JC012413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babanin, A., K. Tsagareli, I. Young, and D. Walker, 2007: Implementation of new experimental input/dissipation terms for modelling spectral evolution of wind waves. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting, Oahu, HI, WMO, C2, http://www.waveworkshop.org/10thWaves/Papers/BTYW_2007_10th_Int_Workshop_Wave_Hindcasting_Forecasting_a_.pdf.

  • Bennis, A.-C., F. Ardhuin, and F. Dumas, 2011: On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Modell., 40, 260272, https://doi.org/10.1016/j.ocemod.2011.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigelow, H. B., R. Parmenter, and E. H. Smith, 1927: Physical oceanography of the Gulf of Maine. Bull. U. S. Bur. Fish, 40, 5111027.

  • Bolaños, R., J. M. Brown, and A. J. Souza, 2014: Wave–current interactions in a tide dominated estuary. Cont. Shelf Res., 87, 109123, https://doi.org/10.1016/j.csr.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, M. A., T. J. O’Hare, and K. J. George, 2008: Tidal modulation of incident wave heights: Fact or fiction? J. Coastal Res., 2A, 151159, https://doi.org/10.2112/06-0754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and C. Garrett, 2012: The signature of inertial and tidal currents in offshore wave records. J. Phys. Oceanogr., 42, 10511056, https://doi.org/10.1175/JPO-D-12-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenberg, D. A., 1983: Modelling the mean barotropic circulation in the Bay of Fundy and Gulf of Maine. J. Phys. Oceanogr., 13, 886904, https://doi.org/10.1175/1520-0485(1983)013<0886:MTMBCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillou, N., and G. Chapalain, 2012: Effects of tide on waves in the outer Seine estuary and the harbor of Le Havre. Proc. 33rd Conf. Coastal Engineering, Santander, Spain, International Conference on Coastal Engineering, 47, https://doi.org/10.9753/icce.v33.waves.47.

    • Crossref
    • Export Citation
  • Hanley, K. E., S. E. Belcher, and P. P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282, https://doi.org/10.1175/2010JPO4377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, D., J. Sheng, D. A. Greenberg, and K. R. Thompson, 2011: Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dyn., 61, 18451868, https://doi.org/10.1007/s10236-011-0481-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, R., D. J. McGillicuddy Jr., B. A. Keafer, and D. M. Anderson, 2008: Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling. J. Geophys. Res., 113, C07040, https://doi.org/10.1029/2007JC004602.

    • Search Google Scholar
    • Export Citation
  • Johnson, C. L., and Coauthors, 2011: Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of zooplankton and pelagic nekton. PLOS ONE, 6, e16491, https://doi.org/10.1371/journal.pone.0016491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., R. He, and D. J. McGillicuddy Jr., 2014: Seasonal and interannual variability in Gulf of Maine hydrodynamics: 2002–2011. Deep-Sea Res. II, 103, 210222, https://doi.org/10.1016/j.dsr2.2013.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1961: The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech., 10, 529549, https://doi.org/10.1017/S0022112061000342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, D., 1996: A case study of wave–current interaction in a strong tidal current. J. Phys. Oceanogr., 26, 359372, https://doi.org/10.1175/1520-0485(1996)026<0359:ACSOWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2004: Users guide for a three dimensional, primitive equation, numerical ocean model. Princeton University Rep., 56 pp., http://jes.apl.washington.edu/modsims_two/usersguide0604.pdf.

  • Moon, I.-J., 2005: Impact of a coupled ocean wave–tide–circulation system on coastal modeling. Ocean Modell., 8, 203236, https://doi.org/10.1016/j.ocemod.2004.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NDBC, 2009: Handbook of automated data quality control checks and procedures. NDBC Tech. Doc. 09-02, 78 pp., https://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf.

  • Ohashi, K., J. Sheng, K. R. Thompson, C. G. Hannah, and H. Ritchie, 2009a: Effect of stratification on tidal circulation over the Scotian shelf and Gulf of St. Lawrence: A numerical study using a three-dimensional shelf circulation model. Ocean Dyn., 59, 809825, https://doi.org/10.1007/s10236-009-0212-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, K., J. Sheng, K. R. Thompson, C. G. Hannah, and H. Ritchie, 2009b: Numerical study of three-dimensional shelf circulation on the Scotian shelf using a shelf circulation model. Cont. Shelf Res., 29, 21382156, https://doi.org/10.1016/j.csr.2009.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., R. J. Greatbatch, and D. G. Wright, 2001: Improving the utility of ocean circulation models through adjustment of the momentum balance. J. Geophys. Res., 106, 16 71116 728, https://doi.org/10.1029/2000JC000680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., N. R. Pettigrew, P. Yeats, D. W. Townsend, and G. Han, 2012: Regime shift in the Gulf of Maine. Advancing an Ecosystem Approach in the Gulf of Maine, American Fisheries Society Symp. 79, Bethesda, MD, American Fisheries Society, 185–203.

    • Crossref
    • Export Citation
  • Sun, Y., C. Chen, R. C. Beardsley, Q. Xu, J. Qi, and H. Lin, 2013: Impact of current-wave interaction on storm surge simulation: A case study for Hurricane Bob. J. Geophys. Res. Oceans, 118, 26852701, https://doi.org/10.1002/jgrc.20207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., and J. Sheng, 1997: Subtidal circulation on the Scotian shelf: Assessing the hindcast skill of a linear, barotropic model. J. Geophys. Res., 102, 24 98725 003, https://doi.org/10.1029/97JC00368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., K. Ohashi, J. Sheng, J. Bobanovic, and J. Ou, 2007: Suppressing bias and drift of coastal circulation models through the assimilation of seasonal climatologies of temperature and salinity. Cont. Shelf Res., 27, 13031316, https://doi.org/10.1016/j.csr.2006.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1990: The influence of unsteady depths and currents of tides on wind-wave propagation in shelf seas. J. Phys. Oceanogr., 20, 11661174, https://doi.org/10.1175/1520-0485(1990)020<1166:TIOUDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and Coauthors, 2014: User manual and system documentation of WAVEWATCH III version 4.18. NOAA Marine Modeling and Analysis Branch Tech. Note 316, 311 pp, http://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf.

  • Urrego-Blanco, J., and J. Sheng, 2012: Interannual variability of the circulation over the eastern Canadian shelf. Atmos.–Ocean, 50, 277300, https://doi.org/10.1080/07055900.2012.680430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. E., 1979: The interaction of wind-generated sea waves with tidal currents. J. Phys. Oceanogr., 9, 748755, https://doi.org/10.1175/1520-0485(1979)009<0748:TIOWGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. Sheng, 2016: A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. Oceans, 121, 52525281, https://doi.org/10.1002/2016JC011758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, D., and Q. Zou, 2016: Effect of wave-current interaction on waves and circulation over Georges Bank during storm events. Proc. 35th Conf. Coastal Engineering, Antalya, Turkey, International Conference on Coastal Engineering, 18, https://doi.org/10.9753/icce.v35.waves.18.

    • Crossref
    • Export Citation
  • Xue, H., F. Chai, and N. R. Pettigrew, 2000: A model study of the seasonal circulation in the Gulf of Maine. J. Phys. Oceanogr., 30, 11111135, https://doi.org/10.1175/1520-0485(2000)030<1111:AMSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 105 0
PDF Downloads 249 133 0

Tidal Modulation of Surface Gravity Waves in the Gulf of Maine

View More View Less
  • 1 Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
Restricted access

Abstract

This study examines the tidal modulation of surface gravity waves in the Gulf of Maine (GoM) by using in situ observations and numerical model results. Analysis of observational data demonstrates significant semidiurnal tidal modulations in the mean wave variables for swell-dominated waves in the region. The observed tidal modulation features significant spatial–temporal variabilities, with large magnitudes near the mouth of the GoM. Observations also demonstrate unusual timing of the maximum modulation of significant wave height Hs in the following tidal currents. The coupled wave–circulation model successfully reproduces the observed tidal modulation and the associated spatial–temporal variabilities. Model results demonstrate that the maximum Hs modulations are first generated during the maximum flood tide or ebb tide near the mouth of the GoM and then propagate onto the inner gulf. Around the mouth of the GoM, tidal currents have strong spatial gradients, resulting in great effects of current-induced convergence, refraction, and wavenumber shift. The tidal modulation in Hs generated by convergence (10%–14%) is less affected by the wave propagation direction than the modulation generated by the wavenumber shift (6%–10%) and refraction (4%–20%). The latter modulation varies significantly with changes in the wave propagation direction. In addition, current-enhanced dissipation becomes important during high winds, which reduces at least one-half of the Hs modulation during the study period. The observed unusual timing of the maximum Hs modulation in the following tidal currents can be mostly explained by the convergence and wavenumber shift associated with wave-energy convergence and energy transfer from currents to waves in spatially decelerating currents.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengcheng Wang, pengcheng.wang@dal.ca; Jinyu Sheng, jinyu.sheng@dal.ca

Abstract

This study examines the tidal modulation of surface gravity waves in the Gulf of Maine (GoM) by using in situ observations and numerical model results. Analysis of observational data demonstrates significant semidiurnal tidal modulations in the mean wave variables for swell-dominated waves in the region. The observed tidal modulation features significant spatial–temporal variabilities, with large magnitudes near the mouth of the GoM. Observations also demonstrate unusual timing of the maximum modulation of significant wave height Hs in the following tidal currents. The coupled wave–circulation model successfully reproduces the observed tidal modulation and the associated spatial–temporal variabilities. Model results demonstrate that the maximum Hs modulations are first generated during the maximum flood tide or ebb tide near the mouth of the GoM and then propagate onto the inner gulf. Around the mouth of the GoM, tidal currents have strong spatial gradients, resulting in great effects of current-induced convergence, refraction, and wavenumber shift. The tidal modulation in Hs generated by convergence (10%–14%) is less affected by the wave propagation direction than the modulation generated by the wavenumber shift (6%–10%) and refraction (4%–20%). The latter modulation varies significantly with changes in the wave propagation direction. In addition, current-enhanced dissipation becomes important during high winds, which reduces at least one-half of the Hs modulation during the study period. The observed unusual timing of the maximum Hs modulation in the following tidal currents can be mostly explained by the convergence and wavenumber shift associated with wave-energy convergence and energy transfer from currents to waves in spatially decelerating currents.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengcheng Wang, pengcheng.wang@dal.ca; Jinyu Sheng, jinyu.sheng@dal.ca
Save