• Andres, M., 2016: On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras. Geophys. Res. Lett., 43, 98369842, https://doi.org/10.1002/2016GL069966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., J. Toole, D. Torres, W. Smethie, T. Joyce, and R. Curry, 2016: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at line W. Deep-Sea Res., 109, 1026, https://doi.org/10.1016/j.dsr.2015.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, https://doi.org/10.1029/2008JC005072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, https://doi.org/10.1007/s10236-006-0082-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of the past decades. CLIVAR Exchanges, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

  • Behrens, E., 2013: The oceanic response to Greenland melting: The effect of increasing model resolution. Ph.D. thesis, Christian-Albrechts-Universität, 166 pp.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L. Bamber, 2016: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci., 9, 523527, https://doi.org/10.1038/ngeo2740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 11771190, https://doi.org/10.1175/1520-0485(1989)019<1177:EOCFEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and N. G. Hogg, 1992: Evidence for barotropic wave radiation from the Gulf Stream. J. Phys. Oceanogr., 22, 4261, https://doi.org/10.1175/1520-0485(1992)022<0042:EFBWRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and N. G. Hogg, 1996: Structure of the Gulf Stream and its recirculations at 55°W. J. Phys. Oceanogr., 26, 10021022, https://doi.org/10.1175/1520-0485(1996)026<1002:SOTGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breckenfelder, T., M. Rhein, A. Roessler, C. W. Böning, A. Biastoch, E. Behrens, and C. Mertens, 2017: Flow paths and variability of the North Atlantic Current: A comparison of observations and a high-resolution model. J. Geophys. Res. Oceans, 122, 26862708, https://doi.org/10.1002/2016JC012444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., 1996: Eddy-mean flow interaction in the Gulf Stream at 68°W. Part II: Eddy forcing on the time-mean flow. J. Phys. Oceanogr., 26, 21322151, https://doi.org/10.1175/1520-0485(1996)026<2132:EMFIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, https://doi.org/10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., T. Tozuka, A. Biastoch, J. V. Durgadoo, and L. M. Beal, 2013: Prevalence of strong bottom currents in the greater Agulhas system. Geophys. Res. Lett., 40, 17721776, https://doi.org/10.1002/grl.50400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • Debreu, L., C. Vouland, and E. Blayo, 2008: AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci., 34, 813, https://doi.org/10.1016/j.cageo.2007.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, K. L. Tracey, A. D. Greene, and M. Kennelly, 2010: Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J. Atmos. Oceanic Technol., 27, 507527, https://doi.org/10.1175/2009JTECHO686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 60316 622, https://doi.org/10.1029/2000JC000205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, https://doi.org/10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, https://doi.org/10.1029/97JC00480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, W. D., B. E. Tucholke, M. J. Richardson, and P. E. Biscaye, 2017: Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic. Mar. Geol., 385, 304327, https://doi.org/10.1016/j.margeo.2016.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, F., S. Østerhus, B. Hansen, and D. Quadfasel, 2006: Observations of highly regular oscillations in the overflow plume downstream of the Faroe Bank Channel. J. Geophys. Res., 111, C12020, https://doi.org/10.1029/2006JC003693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gould, W., 1985: Physical oceanography of the Azores front. Prog. Oceanogr., 14, 167190, https://doi.org/10.1016/0079-6611(85)90010-2.

  • Greatbatch, R. J., 1987: A model for the inertial recirculation of a gyre. J. Mar. Res., 45, 601634, https://doi.org/10.1357/002224087788326821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., A. F. Fanning, A. D. Goulding, and S. Levitus, 1991: A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res., 96, 22 00922 023, https://doi.org/10.1029/91JC02423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, M. Claus, L. Czeschel, and W. Rath, 2010a: Transport driven by eddy momentum fluxes in the Gulf Stream Extension region. Geophys. Res. Lett., 37, L24401, https://doi.org/10.1029/2010GL045473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, J.-D. Kohlmann, and L. Czeschel, 2010b: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data. Ocean Dyn., 60, 617628, https://doi.org/10.1007/s10236-010-0282-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., M. Ilicak, I. Fer, E. Darelius, and M. Bentsen, 2014: Baroclinic instability of the Faroe Bank Channel overflow. J. Phys. Oceanogr., 44, 26982717, https://doi.org/10.1175/JPO-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, P. T., 2014: Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: A review and synthesis. Mar. Geol., 353, 169184, https://doi.org/10.1016/j.margeo.2014.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendry, R., 1982: On the structure of the deep Gulf Stream. J. Mar. Res., 40, 119142.

  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J. Climate, 28, 29172944, https://doi.org/10.1175/JCLI-D-14-00381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1983: A note on the deep circulation of the western North Atlantic: Its nature and causes. Deep-Sea Res., 30A, 945961, https://doi.org/10.1016/0198-0149(83)90050-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1992: On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res., 39A, 12311246, https://doi.org/10.1016/0198-0149(92)90066-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and H. Stommel, 1985: On the relation between the deep circulation and the Gulf Stream. Deep-Sea Res., 32A, 11811193, https://doi.org/10.1016/0198-0149(85)90002-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollister, C., and I. McCave, 1984: Sedimentation under deep-sea storms. Nature, 309, 220225, https://doi.org/10.1038/309220a0.

  • Johns, W., T. Shay, J. M. Bane, and D. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838, https://doi.org/10.1029/94JC02497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., J. Hauser, and R. H. Käse, 2001: Cyclogenesis in the Denmark Strait overflow plume. J. Phys. Oceanogr., 31, 32143229, https://doi.org/10.1175/1520-0485(2001)031<3214:CITDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2005: Cyclogenesis in the deep ocean beneath western boundary currents: A process-oriented numerical study. J. Geophys. Res., 110, C03001, https://doi.org/10.1029/2003JC002206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kontar, E., and A. Sokov, 1997: On the benthic boundary layer’s dynamics. J. Mar. Syst., 11, 369385, https://doi.org/10.1016/S0924-7963(96)00131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J. R., 1994: Observations in the northwest corner of the North Atlantic Current. J. Phys. Oceanogr., 24, 14491463, https://doi.org/10.1175/1520-0485(1994)024<1449:OITNCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1996: Propagation and growth of Gulf Stream meanders between 75° and 45°W. J. Phys. Oceanogr., 26, 225241, https://doi.org/10.1175/1520-0485(1996)026<0225:PAGOGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., X. Qian, and D. R. Watts, 1997: Vertical motion in the Gulf Stream and its relation to meanders. J. Geophys. Res., 102, 84858503, https://doi.org/10.1029/96JC03498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2008: NEMO: The ocean engine. Institut Pierre-Simon Laplace Tech. Rep. 27, 217 pp.

  • Marshall, J., and G. Nurser, 1986: Steady, free circulation in a stratified quasi-geostrophic ocean. J. Phys. Oceanogr., 16, 17991813, https://doi.org/10.1175/1520-0485(1986)016<1799:SFCIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., 2001: Structure of the North Atlantic Current in stream-coordinates and the circulation in the Newfoundland basin. Deep-Sea Res. I, 48, 15531580, https://doi.org/10.1016/S0967-0637(00)00103-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and D. S. Luther, 2016: Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge. Deep-Sea Res. I, 112, 137154, https://doi.org/10.1016/j.dsr.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertens, C., M. Rhein, M. Walter, C. W. Böning, E. Behrens, D. Kieke, R. Steinfeldt, and U. Stöber, 2014: Circulation and transports in the Newfoundland basin, western subpolar North Atlantic. J. Geophys. Res. Oceans, 119, 77727793, https://doi.org/10.1002/2014JC010019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, C. E., 1971: Gulf Stream rings in the Sargasso Sea. Deep-Sea Res. Oceanogr. Abstr., 18, 981993, https://doi.org/10.1016/0011-7471(71)90003-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor., 8, 381394, https://doi.org/10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P., 1985: Average velocity and transport of the Gulf Stream near 55W. J. Mar. Res., 43, 83111, https://doi.org/10.1357/002224085788437343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, R. J. Greatbatch, and M. Scheinert, 2015: Seasonal variability of eddy kinetic energy in a global high-resolution ocean model. Geophys. Res. Lett., 42, 93799386, https://doi.org/10.1002/2015GL066152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savidge, D. K., and J. M. Bane, 1999a: Cyclogenesis in the deep ocean beneath the Gulf Stream: 1. Description. J. Geophys. Res., 104, 18 111–18 126, https://doi.org/10.1029/1999JC900132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savidge, D. K., and J. M. Bane, 1999b: Cyclogenesis in the deep ocean beneath the Gulf Stream: 2. Dynamics. J. Geophys. Res., 104, 18 12718 140, https://doi.org/10.1029/1999JC900131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, https://doi.org/10.1029/2008GL033407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, T. J., J. M. Bane, D. R. Watts, and K. L. Tracey, 1995: Gulf Stream flow field and events near 68°W. J. Geophys. Res., 100, 22 56522 589, https://doi.org/10.1029/95JC02685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., and H. E. Hurlburt, 2000: The effect of upper ocean eddies on the non-steric contribution to the barotropic mode. Geophys. Res. Lett., 27, 27132716, https://doi.org/10.1029/1999GL011105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371, https://doi.org/10.1175/1520-0485(1976)006<0355:BIITDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., I. Ginis, and S. A. Frolov, 2001: Equilibration of baroclinic meanders and deep eddies in a Gulf Stream–type jet over a sloping bottom. J. Phys. Oceanogr., 31, 20492065, https://doi.org/10.1175/1520-0485(2001)031<2049:EOBMAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J. D., and W. Schmitz, 1989: A limited-area model of the Gulf Stream: Design, initial experiments, and model-data intercomparison. J. Phys. Oceanogr., 19, 791814, https://doi.org/10.1175/1520-0485(1989)019<0791:ALAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Claus, R. J. Greatbatch, and J. Sheng, 2017: Decomposition of the mean barotropic transport in a high-resolution model of the North Atlantic Ocean. Geophys. Res. Lett., 44, 11 53711 546, https://doi.org/10.1002/2017GL074825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D. R., and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87, 94679476, https://doi.org/10.1029/JC087iC12p09467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D. R., K. L. Tracey, J. M. Bane, and T. J. Shay, 1995: Gulf Stream path and thermocline structure near 74°W and 68°W. J. Geophys. Res., 100, 18 29118 312, https://doi.org/10.1029/95JC01850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1976: On the North Atlantic Circulation. Johns Hopkins University Press, 110 pp.

  • Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, https://doi.org/10.1016/0021-9991(79)90051-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, https://doi.org/10.1175/JPO-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, https://doi.org/10.1175/JPO3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 24
PDF Downloads 24 24 24

Instability-Driven Benthic Storms below the Separated Gulf Stream and the North Atlantic Current in a High-Resolution Ocean Model

View More View Less
  • 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • | 2 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • | 3 GEOMAR Helmholtz Centre for Ocean Research Kiel, and Faculty of Mathematics and Natural Sciences, Christian Albrechts University of Kiel, Kiel, Germany
Restricted access

Abstract

Benthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally collocated with the peak near-bottom eddy kinetic energy. A common feature is meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m s−1. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-yr time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be collocated well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic–baroclinic instability-driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of the largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: René Schubert, rschubert@geomar.de

Abstract

Benthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally collocated with the peak near-bottom eddy kinetic energy. A common feature is meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m s−1. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-yr time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be collocated well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic–baroclinic instability-driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of the largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: René Schubert, rschubert@geomar.de
Save