• Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, https://doi.org/10.1063/1.869433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., A. Tandon, and A. Mahadevan, 2011: Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr., 41, 20802101, https://doi.org/10.1175/JPO-D-11-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1950: The application of the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76, 133146, https://doi.org/10.1002/qj.49707632804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berti, S., F. A. Dos Santos, G. Lacorata, and A. Vulpiani, 2011: Lagrangian drifter dispersion in the southwestern Atlantic Ocean. J. Phys. Oceanogr., 41, 16591672, https://doi.org/10.1175/2011JPO4541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bettencourt, J. H., C. Lopez, and E. Hernandez-Garcia, 2012: Oceanic three-dimensional Lagrangian coherent structures: A study of a mesoscale eddy in the Benguela upwelling region. Ocean Modell., 51, 7383, https://doi.org/10.1016/j.ocemod.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bettencourt, J. H., V. Rossi, E. Hernandez-Garcia, M. Marta-Almeida, and C. Lopez, 2017: Characterization of the structure and cross-shore transport properties of a coastal upwelling filament using three-dimensional finite-size Lyapunov exponents. J. Geophys. Res. Oceans, 122, 74337448, https://doi.org/10.1002/2017JC012700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and I. Sokolov, 2002: Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids, 14, 32243232, https://doi.org/10.1063/1.1498121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1983: The near-surface dynamics of coastal upwelling. Prog. Oceanogr., 12, 223257, https://doi.org/10.1016/0079-6611(83)90009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., F. Colas, J. C. McWilliams, P. Penven, and P. Marchesiello, 2008: Eddies in eastern boundary subtropical upwelling systems. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 131–147, https://doi.org/10.1029/177GM10.

    • Crossref
    • Export Citation
  • Corrado, R., G. Lacorata, L. Palatella, R. Santoleri, and E. Zambianchi, 2017: General characteristics of relative dispersion in the ocean. Sci. Rep., 7, 46291, https://doi.org/10.1038/srep46291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlaß, J., M. Latif, and W. Park, 2015: Improving climate model simulation of tropical Atlantic sea surface temperature: The importance of enhanced vertical atmosphere model resolution. Geophys. Res. Lett., 42, 24012408, https://doi.org/10.1002/2015GL063310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hösen, E., J. Möller, K. Jochumsen, and D. Quadfasel, 2016: Scales and properties of cold filaments in the Benguela upwelling system off Lüderitz. J. Geophys. Res. Oceans, 121, 18961913, https://doi.org/10.1002/2015JC011411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houry, S., E. Dombrowsky, P. D. Mey, and J.-F. Minster, 1987: Brunt–Vaäisälä frequency and Rossby radii in the South Atlantic. J. Phys. Oceanogr., 17, 16191626, https://doi.org/10.1175/1520-0485(1987)017<1619:BVFARR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, M.-C., J. Paret, and P. Tabeling, 1999: Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett., 82, 28722875, https://doi.org/10.1103/PhysRevLett.82.2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Kostianoy, A., and A. G. Zatsepin, 1996: The West African coastal upwelling filaments and cross-frontal water exchange conditioned by them. J. Mar. Syst., 7, 349359, https://doi.org/10.1016/0924-7963(95)00029-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., J. H. LaCasce, and K. A. Orvik, 2009: Relative dispersion in the Nordic seas. J. Mar. Res., 67, 411433, https://doi.org/10.1357/002224009790741102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1966: Isotropic turbulence and inertial range structure. Phys. Fluids, 9, 17281752, https://doi.org/10.1063/1.1761928.

  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, https://doi.org/10.1357/002224003322201205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, https://doi.org/10.1029/2010JC006338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., F. A. Shillington, and C. M. Duncomb Rae, 1991: Observation of extreme upwelling filaments in the southeast Atlantic Ocean. Science, 253, 774776, https://doi.org/10.1126/science.253.5021.774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., A. Eggert, T. Junker, G. Nausch, T. Ohde, and M. Schmidt, 2014: Cross shelf hydrographic and hydrochemical conditions and their short term variability at the northern Benguela during a normal upwelling season. J. Mar. Syst., 140, 92110, https://doi.org/10.1016/j.jmarsys.2014.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukiibi, D., G. Badin, and N. Serra, 2016: Three-dimensional chaotic advection by mixed layer baroclinic instabilities. J. Phys. Oceanogr., 46, 15091529, https://doi.org/10.1175/JPO-D-15-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, A. A., V. Mohrholz, and M. Schmidt, 2013: The circulation dynamics associated with a northern Benguela upwelling filament during October 2010. Cont. Shelf Res., 63, 5963, https://doi.org/10.1016/j.csr.2013.04.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, H. Childs, H. Krishnan, C. Garth, A. C. Haza, and E. Ryan, 2012: On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Modell., 56, 1630, https://doi.org/10.1016/j.ocemod.2012.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, 110A, 709737, https://doi.org/10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Sanson, L. Z., P. Pérez-Brunius, and J. Sheinbaum, 2017: Surface relative dispersion in the southwestern Gulf of Mexico. J. Phys. Oceanogr., 47, 387403, https://doi.org/10.1175/JPO-D-16-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, K., A. C. Haza, A. Griffa, T. M. Özgökmen, P. M. Poulain, R. Gerinc, G. Peggion, and M. Rixen, 2011: Relative dispersion in the Liguro-Provençal Basin: From sub-mesoscale to mesoscale. Deep-Sea Res. I, 58, 209228, https://doi.org/10.1016/j.dsr.2010.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, K., and Coauthors, 2012: Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett., 39, L11608, https://doi.org/10.1029/2012GL051879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, L. V., and G. Nelson, 1996: The Benguela: Large scale features and processes and system variability. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 163–210.

    • Crossref
    • Export Citation
  • van Sebille, E., S. Waterman, A. Barthel, R. Lumpkin, S. R. Keating, C. Fogwill, and C. Turney, 2015: Pairwise surface drifter separation in the western Pacific sector of the Southern Ocean. J. Geophys. Res. Oceans, 120, 67696781, https://doi.org/10.1002/2015JC010972.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 6 6 6

Relative Dispersion of Surface Drifters in the Benguela Upwelling Region

View More View Less
  • 1 Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
Restricted access

Abstract

We examine the relative dispersion of surface drifters deployed in groups of triplets at the boundaries of a filament in the upwelling region off Namibia for both the entire ensemble and the two main subgroups. For the drifters in the group released at the northern boundary of the filament, close to the upwelling front, we find that the mean-square pair separation 〈s2(t)〉 shows the characteristic distinct dispersion regimes [nonlocal, local (Richardson), and diffusive] of an ocean surface mixed layer. We confirm the different dispersion regimes by a rescaled presentation of the moments 〈sn(t)〉 and thereby also explain the anomalous slow decay of the kurtosis in the transient regime. For the drifter group released at the southern boundary, 〈s2(t)〉 remains constant for a short period, followed by a steep “Richardson like” increase and an asymptotic diffusive increase. In contrast to the northern release, the corresponding moments reveal a narrow distribution of pair separations for all regimes. The analysis of finite-size Lyapunov exponents (FSLEs) reveals consistent results when applied to the two releases separately. When applied to the entire drifter ensemble, the two measures yield inconsistent results. We relate the breakdown of consistency to the impact of the different dynamics on the respective averages: whereas, because of separation in scale, 〈s2(t)〉 is dominated by the northern release, the decay of the FSLEs for small distances reflects the drifter dynamics within the filament.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Dräger-Dietel, julia.draeger-dietel@uni-hamburg.de

Abstract

We examine the relative dispersion of surface drifters deployed in groups of triplets at the boundaries of a filament in the upwelling region off Namibia for both the entire ensemble and the two main subgroups. For the drifters in the group released at the northern boundary of the filament, close to the upwelling front, we find that the mean-square pair separation 〈s2(t)〉 shows the characteristic distinct dispersion regimes [nonlocal, local (Richardson), and diffusive] of an ocean surface mixed layer. We confirm the different dispersion regimes by a rescaled presentation of the moments 〈sn(t)〉 and thereby also explain the anomalous slow decay of the kurtosis in the transient regime. For the drifter group released at the southern boundary, 〈s2(t)〉 remains constant for a short period, followed by a steep “Richardson like” increase and an asymptotic diffusive increase. In contrast to the northern release, the corresponding moments reveal a narrow distribution of pair separations for all regimes. The analysis of finite-size Lyapunov exponents (FSLEs) reveals consistent results when applied to the two releases separately. When applied to the entire drifter ensemble, the two measures yield inconsistent results. We relate the breakdown of consistency to the impact of the different dynamics on the respective averages: whereas, because of separation in scale, 〈s2(t)〉 is dominated by the northern release, the decay of the FSLEs for small distances reflects the drifter dynamics within the filament.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Dräger-Dietel, julia.draeger-dietel@uni-hamburg.de
Save