• Armi, L., and W. Zenk, 1984: Large lenses of highly saline Mediterranean water. J. Phys. Oceanogr., 14, 15601576, https://doi.org/10.1175/1520-0485(1984)014<1560:LLOHSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., D. Hebert, N. Oakey, J. Price, P. Richardson, H. T. Rossby, and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354370, https://doi.org/10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bebieva, Y., and M.-L. Timmermans, 2015: An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean. J. Geophys. Res. Oceans, 121, 457475, https://doi.org/10.1002/2015JC011105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bebieva, Y., and M.-L. Timmermans, 2017: The relationship between double-diffusive intrusions and staircases in the Arctic Ocean. J. Phys. Oceanogr., 47, 867878, https://doi.org/10.1175/JPO-D-16-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brugler, E. T., R. S. Pickart, G. W. K. Moore, S. Roberts, T. Weingartner, and H. Statscewich, 2014: Seasonal to interannual variability of the Pacific water boundary current in the Beaufort Sea. Prog. Oceanogr., 127, 120, https://doi.org/10.1016/j.pocean.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E., and Coauthors, 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Amer. Meteor. Soc., 96, 20792105, https://doi.org/10.1175/BAMS-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., and P.-T. Shaw, 2003: A numerical study of dense water outflows and halocline anticyclones in an Arctic baroclinic slope current. J. Geophys. Res., 108, 3226, https://doi.org/10.1029/2002JC001473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corlett, W. B., and R. S. Pickart, 2017: The Chukchi slope current. Prog. Oceanogr., 153, 5065, https://doi.org/10.1016/j.pocean.2017.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988a: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988b: Observations of small eddies in the Beaufort Sea. J. Geophys. Res., 93, 66696684, https://doi.org/10.1029/JC093iC06p06669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96, 12 72512 738, https://doi.org/10.1029/91JC01071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39 (Suppl.), S459S484, https://doi.org/10.1016/S0198-0149(06)80016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., T. Schneider, D. S. Battisti, and C. M. Bitz, 2011: Consistent changes in the sea ice seasonal cycle in response to global warming. J. Climate, 24, 53255335, https://doi.org/10.1175/2011JCLI4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2, 148152, https://doi.org/10.1080/16742834.2009.11446789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., R. Skogseth, and F. Geyer, 2010: Internal waves and mixing in the marginal ice zone near the Yermak Plateau. J. Phys. Oceanogr., 40, 16131630, https://doi.org/10.1175/2010JPO4371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1980: Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915943, https://doi.org/10.1175/1520-0485(1980)010<0915:MPITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and L. J. Pratt, 2010: Flow and hydraulics near the sill of Hood Canal, a strongly sheared, continuously stratified fjord. J. Phys. Oceanogr., 40, 10871105, https://doi.org/10.1175/2010JPO4312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., D. Winkel, and T. Sanford, 1993: Varieties of fully resolved spectra of vertical shear. J. Phys. Oceanogr., 23, 124141, https://doi.org/10.1175/1520-0485(1993)023<0124:VOFRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. Morison, 2015: Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res. Oceans, 120, 78807896, https://doi.org/10.1002/2015JC010884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halle, C., 2003: Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res., 108, 3210, https://doi.org/10.1029/2000JC000703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunkins, K. L., 1974: Subsurface eddies in the Arctic Ocean. Deep-Sea Res. Oceanogr. Abstr., 21, 10171033, https://doi.org/10.1016/0011-7471(74)90064-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huppert, H. E., and J. S. Turner, 1981: Double-diffusive convection. J. Fluid Mech., 106, 299329, https://doi.org/10.1017/S0022112081001614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, R., H. Yamazaki, F. Wolk, T. Kono, and J. Yoshida, 2007: An estimation of buoyancy flux for a mixture of turbulence and double diffusion. J. Phys. Oceanogr., 37, 611624, https://doi.org/10.1175/JPO2996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kadko, D., R. S. Pickart, and J. Mathis, 2008: Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. J. Geophys. Res., 113, C02018, https://doi.org/10.1029/2007JC004429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., M. Itoh, and S. Nishino, 2012: Detailed survey of a large baroclinic eddy with extremely high temperatures in the western Canada Basin. Deep-Sea Res. I, 66, 90102, https://doi.org/10.1016/j.dsr.2012.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., T. Kikuchi, and R. Inoue, 2014: Vertical heat transfer based on direct microstructure measurements in the ice-free Pacific-side Arctic Ocean: The role and impact of the Pacific water intrusion. J. Oceanogr., 70, 343353, https://doi.org/10.1007/s10872-014-0234-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., S. Nishino, J. Inoue, K. Maeno, H. Takeda, and K. Oshima, 2016: Enhanced diapycnal mixing due to near-inertial internal waves propagating through an anticyclonic eddy in the ice-free Chukchi Plateau. J. Phys. Oceanogr., 46, 24572481, https://doi.org/10.1175/JPO-D-15-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., 1984: Effective diffusivities within oceanic thermohaline staircases. J. Geophys. Res., 89, 10 48410 488, https://doi.org/10.1029/JC089iC06p10484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., 1990: Fluxes through diffusive staircases, a new formulation. J. Geophys. Res., 95, 33653371, https://doi.org/10.1029/JC095iC03p03365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., H. J. S. Fernando, A. E. Gargett, J. Tanny, and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481, https://doi.org/10.1016/S0079-6611(03)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishfield, R. A., A. J. Plueddemann, and S. Honjo, 2002: Eddys in the Arctic Ocean from IOEB ADCP data. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2002-09, 151 pp., https://doi.org/10.1575/1912/30.

    • Crossref
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1986: The mean and near-inertial velocity fields in a warm-core ring. J. Phys. Oceanogr., 16, 14441461, https://doi.org/10.1175/1520-0485(1986)016<1444:TMANIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36, L05601, https://doi.org/10.1029/2008GL036792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lincoln, B. J., T. P. Rippeth, Y.-D. Lenn, M. L. Timmermans, W. J. Williams, and S. Bacon, 2016: Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys. Res. Lett., 43, 97499756, https://doi.org/10.1002/2016GL070454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luketina, D. A., and J. Imberger, 2001: Determining turbulent kinetic energy dissipation from Batchelor curve fitting. J. Atmos. Oceanic Technol., 18, 100113, https://doi.org/10.1175/1520-0426(2001)018<0100:DTKEDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2016: A tale of two spicy seas. Oceanography, 29 (2), 5061, https://doi.org/10.5670/oceanog.2016.38.

  • Manley, T., and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 49114930, https://doi.org/10.1029/JC090iC03p04911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, B. D., and D. E. Kelley, 1997: Effect of baroclinicity on double-diffusive interleaving. J. Phys. Oceanogr., 27, 19972008, https://doi.org/10.1175/1520-0485(1997)027<1997:EOBODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, https://doi.org/10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melling, H., R. Lake, D. Topham, and D. Fissel, 1984: Oceanic thermal structure in the western Canadian Arctic. Cont. Shelf Res., 3, 233258, https://doi.org/10.1016/0278-4343(84)90010-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and Coauthors, 2014: US Navy operational global ocean and Arctic ice prediction systems. Oceanography, 27 (3), 3243, https://doi.org/10.5670/oceanog.2014.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., I. Fer, A. Sundfjord, and A. K. Peterson, 2017: Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring. J. Geophys. Res. Oceans, 122, 45694586, https://doi.org/10.1002/2016JC012441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, R. D., J. T. Gunn, T. E. Whitledge, P. Schlosser, and W. Smethie, 2000: An Arctic Ocean cold core eddy. J. Geophys. Res., 105, 23 99724 006, https://doi.org/10.1029/2000JC000212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., and E. C. Carmack, 1997: Synoptic flow and density observations near an Arctic shelf break. J. Phys. Oceanogr., 27, 14021419, https://doi.org/10.1175/1520-0485(1997)027<1402:SFADON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., E. C. Carmack, and D. A. Huntley, 2000: Synoptic density and velocity observations of slope waters in the Chukchi and East-Siberian Seas. J. Geophys. Res., 105, 14 10314 119, https://doi.org/10.1029/1999JC000002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neshyba, S., V. T. Neal, and W. Denner, 1971: Temperature and conductivity measurements under Ice Island T-3. J. Geophys. Res., 76, 81078120, https://doi.org/10.1029/JC076i033p08107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, J., K. Aagaard, and L. K. Coachman, 1974: Baroclinic eddies in the Arctic Ocean. Deep-Sea Res. Oceanogr. Abstr., 21, 707719, https://doi.org/10.1016/0011-7471(74)90078-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, A., R. S. Pickart, P. S. Fratantoni, K. Shimada, D. J. Torres, and E. P. Jones, 2009: The western Arctic boundary current at 152°W: Structure, variability, and transport. Deep-Sea Res. II, 56, 11641181, https://doi.org/10.1016/j.dsr2.2008.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

  • Overland, J. E., and M. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett., 40, 20972101, https://doi.org/10.1002/grl.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., 1994: Momentum fluxes through sheared oceanic thermohaline steps. J. Geophys. Res., 99, 22 49122 499, https://doi.org/10.1029/94JC01741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806, https://doi.org/10.1029/JC092iC10p10799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1988: On the horizontal extent of the Canada Basin thermohaline steps. J. Phys. Oceanogr., 18, 14581462, https://doi.org/10.1175/1520-0485(1988)018<1458:OTHEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1989: Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-Sea Res., 36, 531542, https://doi.org/10.1016/0198-0149(89)90004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96, 47694782, https://doi.org/10.1029/90JC02260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., M. D. Levine, T. Dillon, J. Morison, and R. Pinkel, 1990: Hydrography and microstructure of an Arctic cyclonic eddy. J. Geophys. Res., 95, 94119420, https://doi.org/10.1029/JC095iC06p09411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., M. Gregg, and J. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 11991218, https://doi.org/10.1029/JC093iC02p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, A. K., I. Fer, M. G. McPhee, and A. Randelhoff, 2017: Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. J. Geophys. Res. Oceans, 122, 14391456, https://doi.org/10.1002/2016JC012283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., 2004: Shelfbreak circulation in the Alaskan Beaufort Sea: Mean structure and variability. J. Geophys. Res., 109, C04024, https://doi.org/10.1029/2003JC001912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and G. Stossmeister, 2008: Outflow of Pacific water from the Chukchi Sea to the Arctic Ocean. Chin. J. Polar Oceanogr., 19, 135148.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. J. Weingartner, L. J. Pratt, S. Zimmermann, and D. J. Torres, 2005: Flow of winter-transformed Pacific water into the western Arctic. Deep-Sea Res. II, 52, 31753198, https://doi.org/10.1016/j.dsr2.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr., 35, 645665, https://doi.org/10.1175/JPO2715.1.

  • Pisareva, M. N., R. S. Pickart, M. Spall, C. Nobre, D. Torres, G. Moore, and T. E. Whitledge, 2015: Flow of Pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition. Deep-Sea Res. I, 105, 5373, https://doi.org/10.1016/j.dsr.2015.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plueddemann, A., R. Krishfield, T. Takizawa, K. Hatakeyama, and S. Honjo, 1998: Upper ocean velocities in the Beaufort Gyre. Geophys. Res. Lett., 25, 183186, https://doi.org/10.1029/97GL53638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, R. Rember, V. V. Ivanov, Y.-D. Lenn, L. Padman, and E. C. Carmack, 2012: Mooring-based observations of double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr., 42, 95109, https://doi.org/10.1175/2011JPO4606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., 1992: Intrusive mixing in a Mediterranean salt lens—Intrusion slopes and dynamical mechanisms. J. Phys. Oceanogr., 22, 12741285, https://doi.org/10.1175/1520-0485(1992)022<1274:IMIAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., and J. S. Turner, 1979: The vertical length scale of double-diffusive intrusions. Deep-Sea Res., 26A, 903913, https://doi.org/10.1016/198-0149(79)90104-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., and K. Richards, 2003: Oceanic thermohaline intrusions: Observations. Prog. Oceanogr., 56, 499523, https://doi.org/10.1016/S0079-6611(03)00028-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol., 17, 15411555, https://doi.org/10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., N. S. Oakey, and D. Hebert, 2010: Measuring lateral heat flux across a thermohaline front: A model and observational test. J. Mar. Res., 68, 523539, https://doi.org/10.1357/002224010794657146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2001: Arctic Basin circulation. Encyclopedia of Ocean Sciences, J. Steele, Ed., Academic Press, 177–187.

    • Crossref
    • Export Citation
  • Shaw, P.-T., and S.-Y. Chao, 2003: Effects of a baroclinic current on a sinking dense water plume from a submarine canyon and heton shedding. Deep-Sea Res. I, 50, 357370, https://doi.org/10.1016/S0967-0637(03)00017-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., E. C. Carmack, K. Hatakeyama, and T. Takizawa, 2001: Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean. Geophys. Res. Lett., 28, 34413444, https://doi.org/10.1029/2001GL013168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., 2012: Turbulent kinetic energy dissipation in Barrow Canyon. J. Phys. Oceanogr., 42, 10121021, https://doi.org/10.1175/JPO-D-11-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2012: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing. J. Geophys. Res. Oceans, 117, C07010, https://doi.org/10.1029/2012JC007910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., and Coauthors, 2018: Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea. J. Geophys. Res. Oceans, 123, 31643185, https://doi.org/10.1002/2018JC013764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and S. Kimura, 2007: Instability and diapycnal momentum transport in a double-diffusive, stratified shear layer. J. Phys. Oceanogr., 37, 15511565, https://doi.org/10.1175/JPO3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, https://doi.org/10.1175/2007JPO3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamp, A. P., G. O. Hughes, R. I. Nokes, and R. W. Griffiths, 1998: The coupling of waves and convection. J. Fluid Mech., 372, 231271, https://doi.org/10.1017/S0022112098002304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, https://doi.org/10.1029/2003JC002009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1967: Lateral mixing of water masses. Deep-Sea Res., 14, 747753.

  • St. Laurent, L., and R. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, https://doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundfjord, A., I. Fer, Y. Kasajima, and H. Svendsen, 2007: Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. J. Geophys. Res., 112, C05008, https://doi.org/10.1029/2006JC003524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 63996406, https://doi.org/10.1002/2015GL064541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and S. R. Jayne, 2016: The Arctic Ocean spices up. J. Phys. Oceanogr., 46, 12771284, https://doi.org/10.1175/JPO-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008a: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, https://doi.org/10.1029/2008JC004829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008b: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145, https://doi.org/10.1175/2007JPO3782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of Pacific summer water variability in the Arctic’s central Canada Basin. J. Geophys. Res. Oceans, 119, 75237548, https://doi.org/10.1002/2014JC010273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, https://doi.org/10.1029/2009JC005660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

    • Crossref
    • Export Citation
  • Turner, J. S., 1974: Double-diffusive phenomena. Annu. Rev. Fluid Mech., 6, 3755, https://doi.org/10.1146/annurev.fl.06.010174.000345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1978: Double-diffusive intrusions into a density gradient. J. Geophys. Res., 83, 28872901, https://doi.org/10.1029/JC083iC06p02887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., and R. S. Pickart, 2012: Two configurations of the western Arctic shelfbreak current in summer. J. Phys. Oceanogr., 42, 329351, https://doi.org/10.1175/JPO-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, E., 2011: Beaufort shelf break eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and modeling analyses. J. Geophys. Res., 116, C08034, https://doi.org/10.1029/2010JC006259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 98479878, https://doi.org/10.1029/94JC00256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1996: Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317, 179193, https://doi.org/10.1017/S0022112096000717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., T. Weingartner, and R. Lindsay, 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602, https://doi.org/10.1029/2009GL041621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, A. Proshutinsky, and J. Toole, 2014: Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 88008817, https://doi.org/10.1002/2014JC010488.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 550 278 0
PDF Downloads 470 223 0

Microstructure Observations of Turbulent Heat Fluxes in a Warm-Core Canada Basin Eddy

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

An intrahalocline eddy was observed on the Chukchi slope in September of 2015 using both towed CTD and microstructure temperature and shear sections. The core of the eddy was 6°C, significantly warmer than the surrounding −1°C water and far exceeding typical temperatures of warm-core Arctic eddies. Microstructure sections indicated that outside of the eddy the rate of dissipation of turbulent kinetic energy ε was quite low . However, at the edges of the eddy core, ε was elevated to . Three different processes were associated with elevated ε. Double-diffusive steps were found at the eddy’s top edge and were associated with an upward heat flux of 5 W m−2. At the bottom edge of the eddy, shear-driven mixing played a modest role, generating a heat flux of approximately 0.5 W m−2 downward. Along the sides of the eddy, density-compensated thermohaline intrusions transported heat laterally out of the eddy, with a horizontal heat flux of 2000 W m−2. Integrating these fluxes over an idealized approximation of the eddy’s shape, we estimate that the net heat transport due to thermohaline intrusions along the eddy flanks was 2 GW, while the double-diffusive flux above the eddy was 0.4 GW. Shear-driven mixing at the bottom of the eddy accounted for only 0.04 GW. If these processes continued indefinitely at the same rate, the estimated life-span would be 1–2 years. Such eddies may be an important mechanism for the transport of Pacific-origin heat, freshwater, and nutrients into the Canada Basin.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Effie Fine, ecfine@ucsd.edu

Abstract

An intrahalocline eddy was observed on the Chukchi slope in September of 2015 using both towed CTD and microstructure temperature and shear sections. The core of the eddy was 6°C, significantly warmer than the surrounding −1°C water and far exceeding typical temperatures of warm-core Arctic eddies. Microstructure sections indicated that outside of the eddy the rate of dissipation of turbulent kinetic energy ε was quite low . However, at the edges of the eddy core, ε was elevated to . Three different processes were associated with elevated ε. Double-diffusive steps were found at the eddy’s top edge and were associated with an upward heat flux of 5 W m−2. At the bottom edge of the eddy, shear-driven mixing played a modest role, generating a heat flux of approximately 0.5 W m−2 downward. Along the sides of the eddy, density-compensated thermohaline intrusions transported heat laterally out of the eddy, with a horizontal heat flux of 2000 W m−2. Integrating these fluxes over an idealized approximation of the eddy’s shape, we estimate that the net heat transport due to thermohaline intrusions along the eddy flanks was 2 GW, while the double-diffusive flux above the eddy was 0.4 GW. Shear-driven mixing at the bottom of the eddy accounted for only 0.04 GW. If these processes continued indefinitely at the same rate, the estimated life-span would be 1–2 years. Such eddies may be an important mechanism for the transport of Pacific-origin heat, freshwater, and nutrients into the Canada Basin.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Effie Fine, ecfine@ucsd.edu
Save