• Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, https://doi.org/10.1175/JPO-D-11-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and M. Ollitrault, 2016: A direct determination of the World Ocean barotropic circulation. J. Phys. Oceanogr., 46, 255273, https://doi.org/10.1175/JPO-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. Toole, G. Forget, J. D. Zika, A. C. N. Garabato, A. J. G. Nurser, and L. Yu, 2017: Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr., 47, 633647, https://doi.org/10.1175/JPO-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354, https://doi.org/10.1175/2010JPO4480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, https://doi.org/10.1175/2010JPO4353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fürst, J. J., and A. Levermann, 2012: A minimal model for wind- and mixing-driven overturning: Threshold behavior for both driving mechanisms. Climate Dyn., 38, 239260, https://doi.org/10.1007/s00382-011-1003-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559, https://doi.org/10.1126/science.1094917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, https://doi.org/10.1029/2010JC006275.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, https://doi.org/10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., A. B. Sandø, H. Drange, B. Hansen, and H. Valdimarsson, 2005: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309, 18411844, https://doi.org/10.1126/science.1114777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat fluxes in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, https://doi.org/10.1175/2007JCLI1925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132, https://doi.org/10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., D. P. Marshall, and D. A. J. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29, 821836, https://doi.org/10.1007/s00382-007-0262-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2017: Size matters: Another reason why the Atlantic is saltier than the Pacific. J. Phys. Oceanogr., 47, 28432859, https://doi.org/10.1175/JPO-D-17-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B., S. Drijfhout, J. Marotzke, and J. R. Scott, 2003: Sensitivity of basinwide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic–Southern Ocean geometry. J. Phys. Oceanogr., 33, 249266, https://doi.org/10.1175/1520-0485(2003)033<0249:SOBMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, A. T., 1969: A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511528, https://doi.org/10.1017/S0022112069002308.

  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811, https://doi.org/10.1007/s003820050144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean’s thermohaline circulation. J. Climate, 22, 12771286, https://doi.org/10.1175/2008JCLI2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1958: The abyssal circulation. Deep-Sea Res., 5, 8082, https://doi.org/10.1016/S0146-6291(58)80014-4.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, https://doi.org/10.3402/tellusa.v13i2.9491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, https://doi.org/10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26 (1), 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., NATO ASI Series, Vol. 15, Springer, 333–366.

    • Crossref
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1973: Model of the world ocean circulation: I. Wind-driven, two layer. J. Mar. Res., 31, 228288.

  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, https://doi.org/10.1175/2010JPO4393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 5 5 5

The Effect of Northern Hemisphere Winds on the Meridional Overturning Circulation and Stratification

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

The current paradigm for the meridional overturning cell and the associated middepth stratification is that the wind stress in the subpolar region of the Southern Ocean drives a northward Ekman flow, which, together with the global diapycnal mixing across the lower boundary of the middepth waters, feeds the upper branch of the interhemispheric overturning. The resulting mass transport proceeds to the Northern Hemisphere of the North Atlantic, where it sinks, to be eventually returned to the Southern Ocean at depth. Seemingly, the wind stress in the Atlantic basin plays no role. This asymmetry occurs because the Ekman transport in the Atlantic Ocean is assumed to return geostrophically at depths much shallower than those occupied by the interhemispheric overturning. However, this vertical separation fails in the North Atlantic subpolar gyre region. Using a conceptual model and an ocean general circulation model in an idealized geometry, we show that the westerly wind stress in the northern part of the Atlantic provides two opposing effects. Mechanically, the return of the Ekman transport in the North Atlantic opposes sinking in this region, reducing the total overturning and deepening the middepth stratification; thermodynamically, the subpolar gyre advects salt poleward, promoting Northern Hemisphere sinking. Depending on which mechanism prevails, increased westerly winds in the Northern Hemisphere can reduce or augment the overturning.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paola Cessi, pcessi@ucsd.edu

Abstract

The current paradigm for the meridional overturning cell and the associated middepth stratification is that the wind stress in the subpolar region of the Southern Ocean drives a northward Ekman flow, which, together with the global diapycnal mixing across the lower boundary of the middepth waters, feeds the upper branch of the interhemispheric overturning. The resulting mass transport proceeds to the Northern Hemisphere of the North Atlantic, where it sinks, to be eventually returned to the Southern Ocean at depth. Seemingly, the wind stress in the Atlantic basin plays no role. This asymmetry occurs because the Ekman transport in the Atlantic Ocean is assumed to return geostrophically at depths much shallower than those occupied by the interhemispheric overturning. However, this vertical separation fails in the North Atlantic subpolar gyre region. Using a conceptual model and an ocean general circulation model in an idealized geometry, we show that the westerly wind stress in the northern part of the Atlantic provides two opposing effects. Mechanically, the return of the Ekman transport in the North Atlantic opposes sinking in this region, reducing the total overturning and deepening the middepth stratification; thermodynamically, the subpolar gyre advects salt poleward, promoting Northern Hemisphere sinking. Depending on which mechanism prevails, increased westerly winds in the Northern Hemisphere can reduce or augment the overturning.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paola Cessi, pcessi@ucsd.edu
Save