• Anguelova, M. D., 2008: Complex dielectric constant of sea foam at microwave frequencies. J. Geophys. Res., 113, C08001, https://doi.org/10.1029/2007JC004212.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973122, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brumer, S. E., C. J. Zappa, I. M. Brooks, H. Tamura, S. M. Brown, B. W. Blomquist, C. W. Fairall, and A. Cifuentes-Lorenzen, 2017: Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. J. Phys. Oceanogr., 47, 22112235, https://doi.org/10.1175/JPO-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A., G. de Leeuw, L. Cohen, and C. D. O’Dowd, 2008: Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett., 35, L23609, https://doi.org/10.1029/2008GL036165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felizardo, F. C., and W. K. Melville, 1995: Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513532, https://doi.org/10.1175/1520-0485(1995)025<0513:CBANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, S., 2013: Space-based GNSS scatterometry: Ocean wind sensing using an empirically calibrated model. IEEE Trans. Geosci. Remote Sens., 51, 48534863, https://doi.org/10.1109/TGRS.2012.2230401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, S., V. U. Zavorotny, D. M. Akos, S. Hrbek, I. PopStefanija, E. J. Walsh, D. Masters, and M. S. Grant, 2018: Study of surface wind and mean square slope correlation in Hurricane Ike with multiple sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 19751988, https://doi.org/10.1109/JSTARS.2018.2827045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, https://doi.org/10.1175/2010JTECHO812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, https://doi.org/10.1109/TGRS.2011.2177666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, https://doi.org/10.1029/2007JC004277; Corrigendum, 114, C02015, https://doi.org/10.1029/2008JC005244.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and F. Fois, 2015: Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res. Oceans, 120, 36403657, https://doi.org/10.1002/2015JC010782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2017: Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: Surface wave and air–sea exchange computation. J. Phys. Oceanogr., 47, 447470, https://doi.org/10.1175/JPO-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2018: Low-frequency mean square slopes and dominant wave spectral properties: Toward tropical cyclone remote sensing. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2018.2850969, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, 2013: Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J. Atmos. Oceanic Technol., 30, 21682188, https://doi.org/10.1175/JTECH-D-12-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., and M. Zhang, 1999: Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans. Geosci. Remote Sens., 37, 23052316, https://doi.org/10.1109/36.789627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., and J. Dunion, 2009: Comparison of reflected GPS wind speed retrievals with dropsondes in tropical cyclones. Geophys. Res. Lett., 36, L17602, https://doi.org/10.1029/2009GL039512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., J. Dunion, and G. G. Ganoe, 2013: The use of reflected GPS signals to retrieve ocean surface wind speeds in tropical cyclones. Radio Sci., 48, 371387, https://doi.org/10.1002/rds.20042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, L., and C. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25, 104111, https://doi.org/10.1109/TAP.1977.1141539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved Stepped Frequency Microwave Radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, O. Le Calve, and S. Despiau, 2004: Analysis of the variations of the whitecap fraction as measured in a coastal zone. Bound.-Layer Meteor., 111, 339360, https://doi.org/10.1023/B:BOUN.0000016490.83880.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, and S. Despiau, 2007: Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J. Mar. Syst., 66, 3846, https://doi.org/10.1016/j.jmarsys.2006.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 18361849, https://doi.org/10.1109/TGRS.2004.831888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083, https://doi.org/10.1109/TGRS.2009.2027012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., F. J. Wentz, and L. Ricciardulli, 2014: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Oceans, 119, 64996522, https://doi.org/10.1002/2014JC009837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., L. Ricciardulli, and F. J. Wentz, 2017: Capability of the SMAP mission to measure ocean surface winds in storms. Bull. Amer. Meteor. Soc., 98, 16601677, https://doi.org/10.1175/BAMS-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1971: Oceanic whitecaps. J. Phys. Oceanogr., 1, 139144, https://doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. Remote Sensing, G. L. Geernaert and W. L. Plant, Eds., Vol. II, Surface Waves and Fluxes, Kluwer, 41–108.

    • Crossref
    • Export Citation
  • Powell, M. D., 2006: Drag coefficient distribution and wind speed dependence in tropical cyclones: Final report. NOAA Rep., 26 pp.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and B. Chapron, 2003: A model of sea-foam thickness distribution for passive microwave remote sensing applications. J. Geophys. Res., 108, C103321, https://doi.org/10.1029/2003JC001887.

    • Search Google Scholar
    • Export Citation
  • Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, Y. Quilfen, S. Guimbard, and J. F. Piolle, 2016: A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: The five year SMOS-storm database. Remote Sens. Environ., 180, 274291, https://doi.org/10.1016/j.rse.2016.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, D. B., and V. Cardone, 1974: Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res., 79, 444452, https://doi.org/10.1029/JC079i003p00444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., J. A. Verspeek, J. Vogelzang, and A. Verhoef, 2017: The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 21232134, https://doi.org/10.1109/JSTARS.2017.2681806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stogryn, A., 1972: The emissivity of sea foam at microwave frequencies. J. Geophys. Res., 77, 16581666, https://doi.org/10.1029/JC077i009p01658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka, and S. Serizawa, 2007: Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 4760, https://doi.org/10.1016/j.jmarsys.2006.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., and M. Chaen, 1973: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Japan, 12, 111.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J., 1966: Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag., 14, 749754, https://doi.org/10.1109/TAP.1966.1138799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J., 1968: A new model for sea clutter. IEEE Trans. Antennas Propag., 16, 217223, https://doi.org/10.1109/TAP.1968.1139147.

  • Xu, D., X. Liu, and D. Yu, 2000: Probability of wave breaking and whitecap coverage in a fetch-limited sea. J. Geophys. Res., 105, 14 25314 259, https://doi.org/10.1029/2000JC900040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, W. J. Wilson, and J. A. Kong, 1994a: Polarimetric passive remote sensing of ocean wind vectors. Radio Sci., 29, 799814, https://doi.org/10.1029/94RS00450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., R. Kwok, and S. V. Nghiem, 1994b: Polarimetric scattering and emission properties of targets with reflection symmetry. Radio Sci., 29, 14091420, https://doi.org/10.1029/94RS02228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., S. J. Dinardo, A. G. Fore, and F. K. Li, 2010: Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans. Geosci. Remote Sens., 48, 30873100, https://doi.org/10.1109/TGRS.2010.2045002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., W. Tang, A. G. Fore, G. Neumann, A. Hayashi, A. Freedman, J. Chaubell, and G. S. E. Lagerloef, 2013: L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans. Geosci. Remote Sens., 51, 46194632, https://doi.org/10.1109/TGRS.2013.2266915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., A. G. Fore, W. Tang, A. Hayashi, B. Stiles, N. Reul, Y. Weng, and F. Zhang, 2016: SMAP L-band passive microwave observations of ocean surface wind during severe storms. IEEE Trans. Geosci. Remote Sens., 54, 73397350, https://doi.org/10.1109/TGRS.2016.2600239.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 306 182 0
PDF Downloads 294 197 0

High-Wind Drag Coefficient and Whitecap Coverage Derived from Microwave Radiometer Observations in Tropical Cyclones

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
Restricted access

Abstract

Ocean surface roughness and whitecaps are driven by the ocean surface wind stress; thus, their values calculated from the wind speed input may vary significantly depending on the drag coefficient formula applied. Because roughness and whitecaps are critical elements of the ocean surface response in microwave remote sensing, the extensive microwave remote sensing measurements contain the information of the drag coefficient, surface roughness, and whitecap coverage. The scattering radar cross sections from global measurements under calm to tropical cyclone conditions have been used effectively to improve the formulation of the surface roughness spectrum. In this paper, the microwave radiometer measurements in tropical cyclones are exploited to extract information of the drag coefficient and whitecap coverage in high winds. The results show that when expressed as a wind speed power function, the exponent in high winds (greater than about 35 m s−1) is about −1 for the drag coefficient, 0.5 for the wind friction velocity, and 1.25 for the whitecap coverage.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil

Abstract

Ocean surface roughness and whitecaps are driven by the ocean surface wind stress; thus, their values calculated from the wind speed input may vary significantly depending on the drag coefficient formula applied. Because roughness and whitecaps are critical elements of the ocean surface response in microwave remote sensing, the extensive microwave remote sensing measurements contain the information of the drag coefficient, surface roughness, and whitecap coverage. The scattering radar cross sections from global measurements under calm to tropical cyclone conditions have been used effectively to improve the formulation of the surface roughness spectrum. In this paper, the microwave radiometer measurements in tropical cyclones are exploited to extract information of the drag coefficient and whitecap coverage in high winds. The results show that when expressed as a wind speed power function, the exponent in high winds (greater than about 35 m s−1) is about −1 for the drag coefficient, 0.5 for the wind friction velocity, and 1.25 for the whitecap coverage.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil
Save