• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, https://doi.org/10.1175/JPO-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, https://doi.org/10.1007/s10236-009-0180-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthel, A., A. M. Hogg, S. Waterman, and S. Keating, 2017: Jet–topography interactions affect energy pathways to the deep Southern Ocean. J. Phys. Oceanogr., 47, 17991816, https://doi.org/10.1175/JPO-D-16-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogenous Turbulence. Cambridge University Press, 197 pp.

  • Berloff, P., and I. Kamenkovich, 2013a: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 25052527, https://doi.org/10.1175/JPO-D-12-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013b: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 25282544, https://doi.org/10.1175/JPO-D-12-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2018: Dynamics of baroclinic multiple zonal jets. Zonal Jets: Phenomenology, Genesis, Physics, B. Galperin and P. Read, Eds., Cambridge University Press, in press.

    • Crossref
    • Export Citation
  • Berloff, P., W. Dewar, S. Kravtsov, and J. McWilliams, 2007a: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 11031121, https://doi.org/10.1175/JPO3041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., A. M. Hogg, and W. Dewar, 2007b: The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr., 37, 23632386, https://doi.org/10.1175/JPO3118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734, https://doi.org/10.1175/2009JPO4093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, J. T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, https://doi.org/10.1017/jfm.2011.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessières, L., and Coauthors, 2017: Development of a probabilistic ocean modelling system based on NEMO 3.5: Application at eddying resolution. Geosci. Model Dev., 10, 10911106, https://doi.org/10.5194/gmd-10-1091-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourouiba, L., D. N. Straub, and M. L. Waite, 2012: Non-local energy transfers in rotating turbulence at intermediate Rossby number. J. Fluid Mech., 690, 129147, https://doi.org/10.1017/jfm.2011.387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, https://doi.org/10.1016/j.ocemod.2009.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., 2013: Introduction: Ocean modeling—Eddy or not. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 1–3.

    • Crossref
    • Export Citation
  • Chapman, C. C., and R. Morrow, 2014: Variability of Southern Ocean jets near topography. J. Phys. Oceanogr., 44, 676693, https://doi.org/10.1175/JPO-D-13-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., P. Flament, D. S. Luther, and K.-W. Gurgel, 2010: Observations of vortex Rossby waves associated with a mesoscale cyclone. J. Phys. Oceanogr., 40, 23332340, https://doi.org/10.1175/2010JPO4495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., 2013: Energy pathways and structures of oceanic eddies from the ECCO2 state estimate and simplified models. Ph.D. thesis, Massachusetts Institute of Technology, 206 pp., http://dspace.mit.edu/handle/1721.1/79154.

  • Chen, R., and G. R. Flierl, 2015: The contribution of striations to the eddy energy budget and mixing: Diagnostic frameworks and results in a quasigeostrophic barotropic system with mean flow. J. Phys. Oceanogr., 45, 20952113, https://doi.org/10.1175/JPO-D-14-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, https://doi.org/10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33, 10571082, https://doi.org/10.1175/1520-0485(2003)033<1057:NMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, https://doi.org/10.1029/2002RG000122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dussin, R., B. Barnier, L. Brodeau, and J. M. Molines, 2016: The making of Drakkar forcing set DFS5. Drakkar–MyOcean Rep., 34 pp., https://www.drakkar-ocean.eu/forcing-the-ocean.

  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus, 5, 225230, https://doi.org/10.3402/tellusa.v5i3.8647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221, https://doi.org/10.1175/2009JPO4043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219246, https://doi.org/10.1016/0377-0265(80)90029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and N. Dikovskaya, 2010: Geophysical flows with anisotropic turbulence and dispersive waves: Flows with a β-effect. Ocean Dyn., 60, 427441, https://doi.org/10.1007/s10236-010-0278-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godeferd, F. S., and F. Moisy, 2015: Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results. Appl. Mech. Rev., 67, 030802, https://doi.org/10.1115/1.4029006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grégorio, S., T. Penduff, G. Sérazin, J.-M. Molines, B. Barnier, and J. Hirschi, 2015: Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales. J. Phys. Oceanogr., 45, 19291946, https://doi.org/10.1175/JPO-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harper, K. L., S. V. Nazarenko, S. B. Medvedev, and C. Connaughton, 2014: Wave turbulence in the two-layer ocean model. J. Fluid Mech., 756, 309327, https://doi.org/10.1017/jfm.2014.465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method. J. Atmos. Sci., 37, 299307, https://doi.org/10.1175/1520-0469(1980)037<0299:EONETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171, https://doi.org/10.2151/jmsj1965.60.1_156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., and J. R. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645, https://doi.org/10.1175/JPO2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and D. B. Haidvogel, 1981: On the vacillation of an unstable baroclinic wave field in an eddy-resolving model of the oceanic general circulation. J. Phys. Oceanogr., 11, 557568, https://doi.org/10.1175/1520-0485(1981)011<0557:OTVOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43, 29232936, https://doi.org/10.1175/1520-0469(1986)043<2923:NSOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., O. Arzel, and F. Sévellec, 2015: Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr., 45, 157173, https://doi.org/10.1175/JPO-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 1996: The Antarctic Circumpolar Current as a waveguide for Rossby waves. J. Phys. Oceanogr., 26, 13751387, https://doi.org/10.1175/1520-0485(1996)026<1375:TACCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and D. P. Marshall, 2014: Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett., 41, 35173521, https://doi.org/10.1002/2014GL060001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., D. P. Marshall, S. R. Keating, and P. L. Read, 2016: A regime diagram for ocean geostrophic turbulence. Quart. J. Roy. Meteor. Soc., 142, 24112417, https://doi.org/10.1002/qj.2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1618.

  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417, https://doi.org/10.1063/1.1762301.

  • Kraichnan, R. H., 1971: Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech., 47, 525535, https://doi.org/10.1017/S0022112071001216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacasce, J. H., 2002: On turbulence and normal modes in a basin. J. Mar. Res., 60, 431460, https://doi.org/10.1357/002224002762231160.

  • Le Sommer, J., T. Penduff, S. Theetten, G. Madec, and B. Barnier, 2009: How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Modell., 29, 114, https://doi.org/10.1016/j.ocemod.2008.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. IPSL Note du Pole de Modélisation 27, 217 pp.

  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, https://doi.org/10.1080/0309192031000108698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molines, J.-M., B. Barnier, T. Penduff, A. M. Treguier, and J. Le Sommer, 2014: ORCA12.L46 climatological and interannual simulations forced with DFS4.4: GJM02 and MJM88. Drakkar Group Experiment Rep. GDRI-DRAKKAR-2014-03-19, 50 pp., https://www.drakkar-ocean.eu/publications/reports/orca12_reference_experiments_2014.

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarenko, S., 2011: Wave Turbulence. Lecture Notes in Physics Series, Vol. 825, Springer, 279 pp.

    • Crossref
    • Export Citation
  • Penduff, T., J. Le Sommer, B. Barnier, A.-M. Treguier, J. Molines, and G. Madec, 2007: Influence of numerical schemes on current-topography interactions in 1/4° global ocean simulations. Ocean Sci., 3, 509524, https://doi.org/10.5194/os-3-509-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, L. Brodeau, G. C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier, and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284, https://doi.org/10.5194/os-6-269-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, B. Barnier, J. Zika, W. K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, https://doi.org/10.1175/JCLI-D-11-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., and Coauthors, 2014: Ensembles of eddying ocean simulations for climate. CLIVAR Exchanges, No. 19, International CLIVAR Project Office, Southampton, United Kingdom, 26–29.

  • Pierini, S., 2006: A Kuroshio extension system model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr., 36, 16051625, https://doi.org/10.1175/JPO2931.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2011: Low-frequency variability, coherence resonance, and phase selection in a low-order model of the wind-driven ocean circulation. J. Phys. Oceanogr., 41, 15851604, https://doi.org/10.1175/JPO-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., R. B. Scott, and S. Chen, 2008: Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 38, 15151528, https://doi.org/10.1175/2007JPO3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 400 pp.

    • Crossref
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688, https://doi.org/10.1175/JPO3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., T. Penduff, S. Grégorio, B. Barnier, J.-M. Molines, and L. Terray, 2015: Intrinsic variability of sea level from global ocean simulations: Spatiotemporal scales. J. Climate, 28, 42794292, https://doi.org/10.1175/JCLI-D-14-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Y. Hayashi, 1990a: Estimation of atmospheric energetics in the frequency domain during the FGGE year. J. Atmos. Sci., 47, 12551268, https://doi.org/10.1175/1520-0469(1990)047<1255:EOAEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Y. Hayashi, 1990b: Observed and simulated energy cycles in the frequency domain. J. Atmos. Sci., 47, 12431254, https://doi.org/10.1175/1520-0469(1990)047<1243:OASECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonnet, E., and H. A. Dijkstra, 2002: Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr., 32, 17471762, https://doi.org/10.1175/1520-0485(2002)032<1747:SGOLFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, D. N., and B. Nadiga, 2014: Energy fluxes in the quasigeostrophic double gyre problem. J. Phys. Oceanogr., 44, 15051522, https://doi.org/10.1175/JPO-D-13-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., N. Dikovskaya, and B. Galperin, 2007: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 33123327, https://doi.org/10.1175/JAS4013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

    • Crossref
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., J. Le Sommer, J.-M. Molines, and B. Barnier, 2011: Stochastic variability of oceanic flows above topography anomalies. Geophys. Res. Lett., 38, L16611, https://doi.org/10.1029/2011GL048401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 13
PDF Downloads 53 53 11

Inverse Cascades of Kinetic Energy as a Source of Intrinsic Variability: A Global OGCM Study

View More View Less
  • 1 Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, and Sciences de l’Univers au CERFACS, CERFACS/CNRS, URA1857, Toulouse, France
  • 2 Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
  • 3 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan
  • 4 Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway
  • 5 Sciences de l’Univers au CERFACS, CERFACS/CNRS, URA1857, Toulouse, France
© Get Permissions
Restricted access

Abstract

A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0136.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guillaume Sérazin, guillaume.serazin@legos.obs-mip.fr

Abstract

A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0136.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guillaume Sérazin, guillaume.serazin@legos.obs-mip.fr

Supplementary Materials

    • Supplemental Materials (ZIP 226.17 MB)
Save