• Alford, M. H., 2008: Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett., 35, L15602, https://doi.org/10.1029/2008GL034720 10.1029/2008GL034720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, https://doi.org/10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. MacKinnon, R. Pinkel, and J. M. Klymak, 2017: Space–time scales of shear in the North Pacific. J. Phys. Oceanogr., 47, 24552478, https://doi.org/10.1175/JPO-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 60576071, https://doi.org/10.1002/2015JC010998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and Coauthors, 2017: Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. J. Geophys. Res. Oceans, 122, 18821900, https://doi.org/10.1002/2016JC012184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, https://doi.org/10.1016/j.dsr2.2004.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, https://doi.org/10.1016/j.ocemod.2010.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25 (2), 2029, https://doi.org/10.5670/oceanog.2012.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourget, B., H. Scolan, T. Dauxois, M. L. Bars, P. Odier, and S. Joubaud, 2014: Finite-size effects in parametric subharmonic instability. J. Fluid Mech., 759, 739750, https://doi.org/10.1017/jfm.2014.550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft, 2015: Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modell., 85, 4255, https://doi.org/10.1016/j.ocemod.2014.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2016: Impact of internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr., 46, 13991419, https://doi.org/10.1175/JPO-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147, https://doi.org/10.1175/JPO2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2009: Global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography, 22 (2), 6476, https://doi.org/10.5670/oceanog.2009.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. H., 2013: An empirical investigation of energy transfer from the M2 tide to M2 subharmonic wave motions in the Kauai Channel, Hawaii. M.S. thesis, Dept. of Oceanography, University of Hawai‘i at Mānoa, 86 pp., http://hdl.handle.net/10125/101881.

    • Crossref
    • Export Citation
  • Chou, S. H., D. S. Luther, M. D. Guiles, G. S. Carter, and T. Decloedt, 2014: An empirical investigation of nonlinear energy transfer from the M2 internal tide to diurnal wave motions in the Kauai Channel, Hawaii. Geophys. Res. Lett., 41, 505512, https://doi.org/10.1002/2013GL058320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, https://doi.org/10.1029/2003GL017676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elgar, S., and R. T. Guza, 1988: Statistics of bicoherence. IEEE Trans. Acoust. Speech Signal Process., 36, 16671668, https://doi.org/10.1109/29.7555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 1997: Data Analysis Methods in Physical Oceanography. Pergamon, 654 pp.

  • Frajka-Williams, E. E., E. L. Kunze, and J. A. MacKinnon, 2006: Bispectra of internal tides and parametric subharmonic instability. arXiv, https://arxiv.org/abs/1410.0926.

  • Furue, R., 2003: Energy transfer within the small-scale oceanic internal wave spectrum. J. Phys. Oceanogr., 33, 267287, https://doi.org/10.1175/1520-0485(2003)033<0267:ETWTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109, https://doi.org/10.1175/JPO2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2013: Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. J. Geophys. Res. Oceans, 118, 46894698, https://doi.org/10.1002/jgrc.20321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., C. Staquet, and P. Bouruet-Aubertot, 2006: Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett., 33, L08604, https://doi.org/10.1029/2005GL025105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., W. Munk, and G. MacDonald, 1963: Bispectra of ocean waves. Time Series Analysis, M. Rosenblatt, Ed., Wiley, 125–139 pp.

  • Hazewinkel, J., and K. B. Winters, 2011: PSI of the internal tide on a β-plane: Flux divergence and near-inertial wave propagation. J. Phys. Oceanogr., 41, 16731682, https://doi.org/10.1175/2011JPO4605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1973: Inertial oscillations of tidal period. Prog. Oceanogr., 6, 127, https://doi.org/10.1016/0079-6611(73)90003-7.

  • Hibiya, T., Y. Niwa, and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103, 18 71518 722, https://doi.org/10.1029/98JC01362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, https://doi.org/10.1029/2001JC001210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinich, M., and M. Wolinsky, 2005: Normalizing bispectra. J. Stat. Plann. Inference, 130, 405411, https://doi.org/10.1016/j.jspi.2003.12.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27 (3), 116125, https://doi.org/10.5670/oceanog.2014.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. C., and E. J. Powers, 1979: Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci., 7, 120131, https://doi.org/10.1109/TPS.1979.4317207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1976: Observations on the vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6, 894908, https://doi.org/10.1175/1520-0485(1976)006<0894:OOTVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, https://doi.org/10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, https://doi.org/10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013b: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, https://doi.org/10.1175/JPO-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate Process Team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interactions of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and Coauthors, 2014: US Navy operational global ocean and arctic ice prediction system. Oceanography, 27 (3), 3243, https://doi.org/10.5670/oceanog.2014.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott, A. J. Wallcraft, and L. Zamudio, 2015: Toward an internal gravity wave spectrum in global ocean models. Geophys. Res. Lett., 42, 34743481, https://doi.org/10.1002/2015GL063365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikias, C. L., and A. P. Petropulu, 1993: Higher-Order Spectral Analysis:A Non-Linear Signal Processing Framework. Prentice Hall, 528 pp.

  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493502, https://doi.org/10.1007/s10872-011-0052-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and G. S. Carter, 2012: Time-varying parametric subharmonic instability from repeat CTD surveys in the northwestern Pacific Ocean. J. Geophys. Res., 117, C09012, https://doi.org/10.1029/2012JC007882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richet, O., C. Muller, and J.-M. Chomaz, 2017: Impact of a mean current on the internal tide energy dissipation at the critical latitude. J. Phys. Oceanogr., 47, 14571472, https://doi.org/10.1175/JPO-D-16-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft, 2012: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res., 117, C12012, https://doi.org/10.1029/2012JC008364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans, 122, 25192538, https://doi.org/10.1002/2016JC012331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model. J. Geophys. Res., 117, C10024, https://doi.org/10.1029/2012JC008170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., J. G. Richman, and B. K. Arbic, 2014: How stationary are the internal tides in a high resolution global ocean circulation model? J. Geophys. Res. Oceans, 119, 27692787, https://doi.org/10.1002/2013JC009423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138, https://doi.org/10.1016/j.ocemod.2008.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, https://doi.org/10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and H. L. Simmons, 2006: Estimates of power consumed by mixing in the ocean interior. J. Climate, 19, 48774890, https://doi.org/10.1175/JCLI3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, O. M., 2010: Subharmonic energy transfer from the semidiurnal internal tide at Kaena Ridge. Ph.D. thesis, University of California, San Diego, 109 pp.

  • Sun, O. M., and R. Pinkel, 2012: Energy transfer from high-shear, low-frequency internal waves to high-frequency waves near Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 15241547, https://doi.org/10.1175/JPO-D-11-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2013: Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr., 43, 766789, https://doi.org/10.1175/JPO-D-12-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2013: The wave instability pathways to turbulence. J. Fluid Mech., 724, 14, https://doi.org/10.1017/jfm.2013.149.

  • Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft, 2012: Skill tests of three-dimensional tidal currents in a global ocean model: A look at the North Atlantic. J. Geophys. Res., 117, C08014, https://doi.org/10.1029/2011JC007617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft, 2013: Skill testing a three-dimensional global tide model to historical current meter records. J. Geophys. Res. Oceans, 118, 69146933, https://doi.org/10.1002/2013JC009071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the Hybrid Coordinate Ocean Model (HYCOM) version 2.2. Naval Research Laboratory Rep. NRL/MR/7320–09-9166, 149 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf.

  • Wunsch, C., and A. Gill, 1976: Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Res. Oceanogr. Abstr., 23, 371390, https://doi.org/10.1016/0011-7471(76)90835-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., X. Shang, G. Chen, and D. Wang, 2016: Poleward propagation of parametric subharmonic instability-induced inertial waves. J. Geophys. Res. Oceans, 121, 18811895, https://doi.org/10.1002/2015JC011194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., Y. K. Tang, and N. J. Balmforth, 2008: Near-inertial parametric subharmonic instability. J. Fluid Mech., 607, 2549, https://doi.org/10.1017/S0022112008001742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semi-diurnal internal tide from the Hawaiian ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 23
PDF Downloads 36 36 12

Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model

View More View Less
  • 1 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan
  • 2 Department of Mathematics, University of Ghana, Legon, Accra, Ghana
  • 3 College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
  • 4 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • 5 School of Oceanography, University of Washington, Seattle, Washington
  • 6 Division of Marine Science, University of Southern Mississippi, Stennis Space Center, Mississippi
  • 7 Centre for Applied Marine Sciences, Bangor University, Anglesey, United Kingdom
  • 8 Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida
  • 9 Ocean Dynamics and Prediction Branch, Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions
Restricted access

Abstract

The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph K. Ansong, jkansong@umich.edu, jkansong@ug.edu.gh

Abstract

The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph K. Ansong, jkansong@umich.edu, jkansong@ug.edu.gh
Save