• Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderlin, E., and G. S. Hamilton, 2014: Estimates of iceberg submarine melting from high-resolution digital elevation models: Application to Sermilik Fjord, East Greenland. J. Glaciol., 60, 10841092, https://doi.org/10.3189/2014JoG14J085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderlin, E., and I. Howat, 2014: An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett., 41, 866872, https://doi.org/10.1002/2013GL059010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erturk, E., 2009: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids, 60, 275294, https://doi.org/10.1002/fld.1887.

  • FitzMaurice, A., F. Straneo, C. Cenedese, and M. Andres, 2016: Effect of a sheared flow on iceberg motion and melting. Geophys. Res. Lett., 43, 12 52012 527, https://doi.org/10.1002/2016GL071602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FitzMaurice, A., C. Cenedese, and F. Straneo, 2017: Nonlinear response of iceberg side melting to ocean currents. Geophys. Res. Lett., 44, 56375644, https://doi.org/10.1002/2017GL073585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josberger, E. G., and S. Neshyba, 1980: Iceberg melt-driven convection inferred from field measurements of temperature. Ann. Glaciol., 1, 113117, https://doi.org/10.3189/S0260305500017080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merino, I., J. Le Sommer, G. Durand, N. C. Jourdain, G. Madec, P. Mathiot, and J. Tournadre, 2016: Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice. Ocean Modell., 104, 99110, https://doi.org/10.1016/j.ocemod.2016.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, https://doi.org/10.1002/jgrc.20142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., B. H. Robison, J. J. Helly, R. S. Kaufmann, H. A. Ruhl, T. J. Shaw, B. S. Twining, and M. Vernet, 2007: Free-drifting icebergs: Hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317, 478482, https://doi.org/10.1126/science.1142834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A. A., A. Adcroft, O. Sergienko, and G. Marques, 2017: Modeling tabular icebergs submerged in the ocean. J. Adv. Model. Earth Syst., 6, 513526, https://doi.org/10.1002/2017MS001002.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nat. Geosci., 3, 182186, https://doi.org/10.1038/ngeo764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and I. Yashayaev, 2014: Surface buoyant plumes from melting icebergs in the Labrador Sea. Deep-Sea Res. I, 91, 19, https://doi.org/10.1016/j.dsr.2014.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 12
PDF Downloads 27 27 13

A Laboratory Study of Iceberg Side Melting in Vertically Sheared Flows

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 3 Scripps Institution of Oceanography, San Diego, California
© Get Permissions
Restricted access

Abstract

An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. FitzMaurice, apf@princeton.edu

Abstract

An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. FitzMaurice, apf@princeton.edu
Save