• Anderson, D. L. T., and D. J. Carrington, 1993: Modeling interannual variability in the Indian Ocean using momentum fluxes from the operational weather analyses of the United Kingdom Meteorological Office and European Centre for Medium Range Weather Forecasts. J. Geophys. Res., 98, 12 48312 499, https://doi.org/10.1029/93JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Atlas, R., J. Ardizzone, and R. N. Hoffman, 2008: Application of satellite surface wind data to ocean wind analysis. Remote Sensing System Engineering, P. E. Ardanuy and J. J. Puschell, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 7087), 70870B, https://doi.org/10.1117/12.795371.

    • Crossref
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. Weaver, 2013a: Evaluation of the ECMWF Ocean Reanalysis ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Kallen, 2013b: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., and C. Eden, 2005: Annual cycle and interannual variability of the mid-depth tropical Atlantic Ocean. Deep-Sea Res. I, 52, 199219, https://doi.org/10.1016/j.dsr.2004.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., M. Claus, R. J. Greatbatch, R. Kopte, J. M. Toole, W. E. Johns, and C. W. Böning, 2016: Annual and semiannual cycle of equatorial Atlantic circulation associated with basin-mode resonance. J. Phys. Oceanogr., 46, 30113029, https://doi.org/10.1175/JPO-D-15-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and D. W. Moore, 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11, 15781584, https://doi.org/10.1175/1520-0485(1981)011<1578:ANOLFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E .S. Sarachik, 1981: The response of a linear baroclinic equatorial ocean to periodic forcing. J. Mar. Res., 39, 651693.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, D. Wang, and M. J. McPhaden, 2015: Seasonal-to-interannual time-scale dynamics of the Equatorial Undercurrent in the Indian Ocean. J. Phys. Oceanogr., 45, 15321553, https://doi.org/10.1175/JPO-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Shu, Y. Li, D. Wang, and Q. Xie, 2016: The role of Equatorial Undercurrent in sustaining the eastern Indian Ocean upwelling. Geophys. Res. Lett., 43, 64446451, https://doi.org/10.1002/2016GL069433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X. H., J. P. McCreary, B. Qiu, Y. Q. Qi, and Y. Du, 2017: Intraseasonal-to-semiannual variability of sea-surface height in the eastern equatorial Indian Ocean and southern Bay of Bengal. J. Geophys. Res. Oceans, 122, 40514067, https://doi.org/10.1002/2016JC012662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and C. Henin, 1988: Observations of the Equatorial Intermediate Current in the western Pacific Ocean (165°E). J. Phys. Oceanogr., 18, 363366, https://doi.org/10.1175/1520-0485(1988)018<0363:OOTEIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewitte, B., and G. Reverdin, 2000: Vertically propagating annual and interannual variability in an OGCM simulation of the tropical Pacific Ocean in 1985–94. J. Phys. Oceanogr., 30, 15621581, https://doi.org/10.1175/1520-0485(2000)030<1562:VPAAIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donguy, J. R., and G. Meyers, 1995: Observations of geostrophic transport variability in the western tropical Indian Ocean. Deep-Sea Res., 42, 10071028, https://doi.org/10.1016/0967-0637(95)00047-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Y., and Coauthors, 2016: Anomalous behaviors of Wyrtki jets in the equatorial Indian Ocean during 2013. Sci. Rep., 6, 29688, https://doi.org/10.1038/srep29688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1981: Deep currents and their interpretation as equatorial waves in the western Pacific Ocean. J. Phys. Oceanogr., 11, 4870, https://doi.org/10.1175/1520-0485(1981)011<0048:Dcatia>2.0.Co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., 1987: Deep zonal currents in the central equatorial Pacific. J. Mar. Res., 45, 791812, https://doi.org/10.1357/002224087788327163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and F. A. Schott, 1997: Seasonal transport variability of the deep western boundary current in the equatorial Atlantic. J. Geophys. Res., 102, 27 75127 769, https://doi.org/10.1029/97JC02327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L. L., 2007: Intraseasonal variability of the equatorial Indian Ocean observed from sea surface height, wind, and temperature data. J. Phys. Oceanogr., 37, 188202, https://doi.org/10.1175/JPO3006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 1981: Forced standing equatorial ocean wave modes. J. Mar. Res., 39, 695709.

  • Gent, P. R., K. O’Neill, and M. A. Cane, 1983: A model of the semiannual oscillation in the equatorial Indian Ocean. J. Phys. Oceanogr., 13, 21482160, https://doi.org/10.1175/1520-0485(1983)013<2148:AMOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouriou, Y., T. Delcroix, and G. Eldin, 2006: Upper and intermediate circulation in the western equatorial Pacific Ocean in October 1999 and April 2000. Geophys. Res. Lett., 33, L10603, https://doi.org/10.1029/2006GL025941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728, https://doi.org/10.1175/JPO2725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, Y. Masumoto, J. Vialard, and B. Duncan, 2011: Basin resonances in the equatorial Indian Ocean. J. Phys. Oceanogr., 41, 12521270, https://doi.org/10.1175/2011JPO4591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishizaki, H., H. Nakano, T. Nakano, and N. Shikama, 2014: Evidence of equatorial Rossby wave propagation obtained by deep mooring observations in the western Pacific Ocean. J. Oceanogr., 70, 463488, https://doi.org/10.1007/s10872-014-0247-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandar, I., Y. Masumoto, and K. Mizuno, 2009: Subsurface equatorial zonal current in the eastern Indian Ocean. J. Geophys. Res., 114, C06005, https://doi.org/10.1029/2008JC005188.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 1993: Equatorial variability and resonance in a wind-driven Indian Ocean model. J. Geophys. Res., 98, 22 53322 552, https://doi.org/10.1029/93JC02565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23, 11921207, https://doi.org/10.1175/1520-0485(1993)023<1192:TAWDRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, R. A., 1974: Reconnaissance of the Indian Ocean equatorial undercurrent near Addu Atoll. Deep-Sea Res. Oceanogr. Abstr., 21, 123129, https://doi.org/10.1016/0011-7471(74)90069-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Lukas, R., and E. Firing, 1985: The annual Rossby wave in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 5567, https://doi.org/10.1175/1520-0485(1985)015<0055:TARWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., and D. H. Roemmich, 1982: Equatorial currents at semiannual period in the Indian Ocean. J. Phys. Oceanogr., 12, 406413, https://doi.org/10.1175/1520-0485(1982)012<0406:ECASAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marin, F., E. Kestenare, T. Delcroix, F. Durand, S. Cravatte, G. Eldin, and R. Bourdalle-Badie, 2010: Annual reversal of the Equatorial Intermediate Current in the Pacific: Observations and model diagnostics. J. Phys. Oceanogr., 40, 915933, https://doi.org/10.1175/2009JPO4318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, 302A, 385413, https://doi.org/10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395430, https://doi.org/10.1357/002224084788502792.

  • McCreary, J. P., W. Han, D. Shankar, and S. R. Shetye, 1996: Dynamics of the east India coastal current. 2. Numerical solutions. J. Geophys. Res., 101, 13 99314 010, https://doi.org/10.1029/96JC00560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1982: Variability in the central equatorial Indian Ocean. Part 1: Ocean dynamics. J. Mar. Res., 40, 157176.

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. Alonso Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for system 4. ECMWF Tech. Memo. 668, 59 pp., https://www.ecmwf.int/en/elibrary/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.

  • Molinari, R. L., D. Olson, and G. Reverdin, 1990: Surface current distributions in the tropical Indian Ocean derived from compilations of surface buoy trajectories. J. Geophys. Res., 95, 72177238, https://doi.org/10.1029/JC095iC05p07217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and J. P. McCreary, 1990: Excitation of intermediate-frequency equatorial waves at a western ocean boundary: With application to observations from the Indian Ocean. J. Geophys. Res., 95, 52195231, https://doi.org/10.1029/JC095iC04p05219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Wyrtki jet dynamics: Seasonal variability. J. Geophys. Res., 115, C07009, https://doi.org/10.1029/2009JC005922.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2016: Zonal propagation of near-surface zonal currents in relation to surface wind forcing in the equatorial Indian Ocean. J. Phys. Oceanogr., 46, 36233638, https://doi.org/10.1175/JPO-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyadjro, E. S., and M. J. McPhaden, 2014: Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J. Geophys. Res. Oceans, 119, 79697986, https://doi.org/10.1002/2014JC010380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., and H. E. Hurlburt, 1974: An equatorial jet in the Indian Ocean: Theory. Science, 184, 10751077, https://doi.org/10.1126/science.184.4141.1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and S. P. Xie, 2011: Semiannual cycle in zonal wind over the equatorial Indian Ocean. J. Climate, 24, 64716485, https://doi.org/10.1175/2011JCLI4243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, K., and J. R. Luyten, 1984: Equatorial velocity profiles. Part II: Zonal component. J. Phys. Oceanogr., 14, 18421852, https://doi.org/10.1175/1520-0485(1984)014<1842:EVPPIZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys., 16, 1546, https://doi.org/10.1029/RG016i001p00015.

  • Reppin, J., F. A. Schott, J. Fischer, and D. Quadfasel, 1999: Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. J. Geophys. Res., 104, 15 49515 514, https://doi.org/10.1029/1999JC900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., J. Fischer, U. Garternicht, and D. Quadfasel, 1997: Summer monsoon response of the northern Somali Current, 1995. Geophys. Res. Lett., 24, 25652568, https://doi.org/10.1029/97GL00888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., J. P. McCreary, W. Han, and S. R. Shetye, 1996: Dynamics of the east India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res., 101, 13 97513 991, https://doi.org/10.1029/96JC00559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and F. Colberg, 2011: Deep ocean warming assessed from altimeters, Gravity Recovery and Climate Experiment, in situ measurements, and a non-Boussinesq ocean general circulation model. J. Geophys. Res., 116, C02020, https://doi.org/10.1029/2010JC006601.

    • Search Google Scholar
    • Export Citation
  • Thierry, V., A. M. Treguier, and H. Mercier, 2004: Numerical study of the annual and semi-annual fluctuations in the deep equatorial Atlantic Ocean. Ocean Modell., 6, 130, https://doi.org/10.1016/S1463-5003(02)00054-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., J. N. Wang, C. Guan, Q. Ma, and D. X. Zhang, 2016: Mooring observations of equatorial currents in the upper 1000 m of the western Pacific Ocean during 2014. J. Geophys. Res. Oceans, 121, 37303740, https://doi.org/10.1002/2015JC011510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1977: Response of an equatorial ocean to a periodic monsoon. J. Phys. Oceanogr., 7, 497511, https://doi.org/10.1175/1520-0485(1977)007<0497:ROAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, https://doi.org/10.1126/science.181.4096.262.

  • Yamagata, T., K. Mizuno, and Y. Masumoto, 1996: Seasonal variations in the equatorial Indian Ocean and their impact on the Lombok Throughflow. J. Geophys. Res., 101, 12 46512 473, https://doi.org/10.1029/95JC03623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W. D., B. Q. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, https://doi.org/10.1029/2005GL024327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D. L., and W. Q. Han, 2006: Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 930944, https://doi.org/10.1175/JPO2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 9
PDF Downloads 29 29 11

Features of the Equatorial Intermediate Current Associated with Basin Resonance in the Indian Ocean

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • 2 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 3 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 4 Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
© Get Permissions
Restricted access

Abstract

This paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0238.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Gengxin Chen, chengengxin@scsio.ac.cn

Abstract

This paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0238.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Gengxin Chen, chengengxin@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 3.26 MB)
Save