Abstract
The influence of submesoscale currents on the distribution and subduction of passive, buoyant tracers in the mixed layer is examined using large-eddy simulations. Submesoscale eddies are generated through an ageostrophic baroclinic instability associated with a background horizontal buoyancy gradient. The simulations also include various levels of surface cooling, which provides an additional source of three-dimensional turbulence. Submesoscales compete against turbulent convection and restratify the mixed layer while generating strong turbulence along a submesoscale front. Buoyant tracers accumulate at the surface along the submesoscale front where they are subducted down into the water column. The presence of submesoscales strongly modifies the vertical tracer flux, even in the presence of strong convective forcing. The correlation between high tracer concentration and strong downwelling enhances the vertical diffusivity for buoyant tracers.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Publisher’s Note: This article was revised on 19 December 2018 to include a data availability statement in the Acknowledgments section that was missing when originally published.