• Adcock, T. A. A., and P. H. Taylor, 2014: The physics of anomalous (“rogue”) ocean waves. Rep. Prog. Phys., 77, 105901, https://doi.org/10.1088/0034-4885/77/10/105901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alber, I. E., 1978: The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. Roy. Soc. London, 363A, 525546, https://doi.org/10.1098/rspa.1978.0181.

    • Search Google Scholar
    • Export Citation
  • Bai, J., and S. Ng, 2005: Tests for skewness, kurtosis, and normality for time series data. J. Bus. Econ. Stat., 23, 4960, https://doi.org/10.1198/073500104000000271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Y., 2013: On sample skewness and kurtosis. Econometric Rev., 32, 415448, https://doi.org/10.1080/07474938.2012.690665.

  • Benetazzo, A., F. Barbariol, F. Bergamasco, A. Torsello, S. Carniel, and M. Sclavo, 2015: Observation of extreme sea waves in a space–time ensemble. J. Phys. Oceanogr., 45, 22612275, https://doi.org/10.1175/JPO-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., and Coauthors, 2017: On the shape and likelihood of oceanic rogue waves. Sci. Rep., 7, 8276, https://doi.org/10.1038/s41598-017-07704-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., and J. E. Feir, 1967: The disintegration of wave trains on deep water: Part 1. Theory. J. Fluid Mech., 27, 417430, https://doi.org/10.1017/S002211206700045X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E., and A. Toffoli, 2014: Occurrence of rogue sea states and consequences for marine structures. Ocean Dyn., 64, 14571468, https://doi.org/10.1007/s10236-014-0753-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E., and O. Gramstad, 2016: Rogue waves: Impact on ships and offshore structures. Det Norske Veritas Germanischer Lloyd Strategic Research and Innovation Position Paper 5-2015, 60 pp.

  • Cavaleri, L., L. Bertotti, L. Torrisi, E. Bitner-Gregersen, M. Serio, and M. Onorato, 2012: Rogue waves in crossing seas: The Louis Majesty accident. J. Geophys. Res., 117, C00J10, https://doi.org/10.1029/2012JC007923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christou, M., and K. Ewans, 2014: Field measurements of rogue water waves. J. Phys. Oceanogr., 44, 23172335, https://doi.org/10.1175/JPO-D-13-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, D. R., P. G. Saffman, and H. C. Yuen, 1980: Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion, 2, 116, https://doi.org/10.1016/0165-2125(80)90029-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, D. R., B. M. Lake, P. G. Saffman, and H. C. Yuen, 1981: Stability of weakly nonlinear deep-water waves in two and three dimensions. J. Fluid Mech., 105, 177191, https://doi.org/10.1017/S0022112081003169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommermuth, D. G., and D. K. P. Yue, 1987: A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech., 184, 267288, https://doi.org/10.1017/S002211208700288X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedele, F., J. Brennan, S. Ponce de León, J. Dudley, and F. Dias, 2016: Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6, 27715, https://doi.org/10.1038/srep27715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gramstad, O., and K. Trulsen, 2007: Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech., 582, 463472, https://doi.org/10.1017/S0022112007006507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gramstad, O., and K. Trulsen, 2010: Can swell increase the number of freak waves in a wind sea? J. Fluid Mech., 650, 5779, https://doi.org/10.1017/S0022112009993491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gramstad, O., and K. Trulsen, 2011: Fourth-order coupled nonlinear Schrödinger equations for gravity waves on deep water. Phys. Fluids, 23, 062102, https://doi.org/10.1063/1.3598316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2003: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., 33, 863884, https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., and M. Onorato, 2007: The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanogr., 37, 23892400, https://doi.org/10.1175/JPO3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasitskii, V. P., 1994: On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech., 272, 120, https://doi.org/10.1017/S0022112094004350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., J. Liu, H. Socquet-Juglard, K. B. Dysthe, and K. Trulsen, 2004: Spatial extreme value analysis of nonlinear simulations of random surface waves. Proc. 23rd Int. Conf. on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, American Society of Mechanical Engineers, OMAE2004-51336, https://doi.org/10.1115/OMAE2004-51336.

    • Crossref
    • Export Citation
  • Mori, N., and P. A. E. M. Janssen, 2006: On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36, 14711483, https://doi.org/10.1175/JPO2922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., M. Onorato, and P. A. E. M. Janssen, 2011: On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr., 41, 14841497, https://doi.org/10.1175/2011JPO4542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamura, M., 1984: Instabilities of weakly nonlinear standing gravity waves. J. Phys. Soc. Japan, 53, 37883796, https://doi.org/10.1143/JPSJ.53.3788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onorato, M., A. R. Osborne, M. Serio, and S. Bertone, 2001: Freak waves in random oceanic sea states. Phys. Rev. Lett., 86, 58315834, https://doi.org/10.1103/PhysRevLett.86.5831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onorato, M., A. R. Osborne, M. Serio, L. Cavaleri, C. Brandini, and C. T. Stansberg, 2004: Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev., 70E, 067302, https://doi.org/10.1103/PhysRevE.70.067302.

    • Search Google Scholar
    • Export Citation
  • Onorato, M., A. R. Osborne, and M. Serio, 2006: Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys. Rev. Lett., 96, 014503, https://doi.org/10.1103/PhysRevLett.96.014503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onorato, M., and Coauthors, 2009: Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three-dimensional wave basin. J. Fluid Mech., 627, 235257, https://doi.org/10.1017/S002211200900603X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onorato, M., D. Proment, and A. Toffoli, 2010: Freak waves in crossing seas. Eur. Phys. J. Spec. Top., 185, 4555, https://doi.org/10.1140/epjst/e2010-01237-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piterbarg, V. I., 1996: Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society, 206 pp.

  • Roskes, G. J., 1976: Nonlinear multiphase deep-water wavetrains. Phys. Fluids, 19, 12531254, https://doi.org/10.1063/1.861609.

  • Shukla, P. K., I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, 2006: Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett., 97, 094501, https://doi.org/10.1103/PhysRevLett.97.094501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, P. K., M. Marklund, and L. Stenflo, 2007: Modulational instability of nonlinearly interacting incoherent sea states. JETP Lett., 84, 645649, https://doi.org/10.1134/S0021364006240039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., E. M. Bitner-Gregersen, A. R. Osborne, M. Serio, J. Monbaliu, and M. Onorato, 2011: Extreme waves in random crossing seas: Laboratory experiments and numerical simulations. Geophys. Res. Lett., 38, L06605, https://doi.org/10.1029/2011GL046827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trulsen, K., J. C. Nieto Borge, O. Gramstad, L. Aouf, and J. M. Lefèvre, 2015: Crossing sea state and rogue wave probability during the Prestige accident. J. Geophys. Res. Oceans, 120, 71137136, https://doi.org/10.1002/2015JC011161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, B. J., K. A. Brueckner, R. S. Janda, D. M. Milder, and R. L. Milton, 1987: A new numerical method for surface hydrodynamics. J. Geophys. Res., 92, 11 80311 824, https://doi.org/10.1029/JC092iC11p11803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, W., Y. Liu, G. Wu, and D. K. P. Yue, 2013: Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech., 720, 357392, https://doi.org/10.1017/jfm.2013.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuen, H. C., and B. M. Lake, 1982: Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech., 22, 67229, https://doi.org/10.1016/S0065-2156(08)70066-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 1968: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 9, 190194, https://doi.org/10.1007/BF00913182.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 79
PDF Downloads 72 72 32

Modulational Instability and Rogue Waves in Crossing Sea States

View More View Less
  • 1 Group Technology and Research, DNV GL, Høvik, Norway
  • 2 Department of Mathematics, University of Oslo, Oslo, Norway
  • 3 Department of Physics and Mathematics, University of Alcalá, Alcalá de Henares, Spain
© Get Permissions
Restricted access

Abstract

Wave statistical properties and occurrence of extreme and rogue waves in crossing sea states are investigated. Compared to previous studies a more extensive set of crossing sea states are investigated, both with respect to spectral shape of the individual wave systems and with respect to the crossing angle and separation in peak frequency of the two wave systems. It is shown that, because of the effects described by Piterbarg, for a linear sea state the expected maximum crest elevation over a given surface area depends on the crossing angle so that the expected maximum crest elevation is largest when two wave systems propagate with a crossing angle close to 90°. It is further shown by nonlinear phase-resolving numerical simulations that nonlinear effects have an opposite effect, such that maximum sea surface kurtosis is expected for relatively large and small crossing angles, with a minimum around 90°, and that the expected maximum crest height is almost independent of the crossing angle. The numerical results are accompanied by analysis of the modulational instability of two crossing Stokes waves, which is studied using the Zakharov equation so that, different from previous studies, results are valid for arbitrary-bandwidth perturbations. It is shown that there is a positive correlation between the value of kurtosis in the numerical simulations and the maximum unstable growth rate of two crossing Stokes waves, even for realistic broadband crossing sea states.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Odin Gramstad, odin.gramstad@dnvgl.com

Abstract

Wave statistical properties and occurrence of extreme and rogue waves in crossing sea states are investigated. Compared to previous studies a more extensive set of crossing sea states are investigated, both with respect to spectral shape of the individual wave systems and with respect to the crossing angle and separation in peak frequency of the two wave systems. It is shown that, because of the effects described by Piterbarg, for a linear sea state the expected maximum crest elevation over a given surface area depends on the crossing angle so that the expected maximum crest elevation is largest when two wave systems propagate with a crossing angle close to 90°. It is further shown by nonlinear phase-resolving numerical simulations that nonlinear effects have an opposite effect, such that maximum sea surface kurtosis is expected for relatively large and small crossing angles, with a minimum around 90°, and that the expected maximum crest height is almost independent of the crossing angle. The numerical results are accompanied by analysis of the modulational instability of two crossing Stokes waves, which is studied using the Zakharov equation so that, different from previous studies, results are valid for arbitrary-bandwidth perturbations. It is shown that there is a positive correlation between the value of kurtosis in the numerical simulations and the maximum unstable growth rate of two crossing Stokes waves, even for realistic broadband crossing sea states.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Odin Gramstad, odin.gramstad@dnvgl.com
Save