• Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, https://doi.org/10.1016/0924-7963(94)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., X.-H. Yan, and Y. Jiang, 2014: Coastal cape and canyon effects on wind-driven upwelling in northern Taiwan Strait. J. Geophys. Res. Oceans, 119, 46054625, https://doi.org/10.1002/2014JC009831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1982: Circulation in the Coastal Ocean. Springer, 281 pp.

    • Crossref
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1987: A tidal model of the northeast Pacific. Atmos.–Ocean, 25, 2245, https://doi.org/10.1080/07055900.1987.9649262.

  • Gan, J., H. San Ho, and L. Liang, 2013: Dynamics of intensified downwelling circulation over a widened shelf in the northeastern South China Sea. J. Phys. Oceanogr., 43, 8094, https://doi.org/10.1175/JPO-D-12-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Y., R. He, G. G. Gawarkiewicz, and D. K. Savidge, 2015: Numerical investigation of coastal circulation dynamics near Cape Hatteras, North Carolina, in January 2005. Ocean Dyn., 65, 115, https://doi.org/10.1007/s10236-014-0778-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B. X., and G. H. Fang, 2006: Winter counter-wind currents off the southeastern China coast: A review. J. Oceanogr., 62, 124, https://doi.org/10.1007/s10872-006-0028-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, H. S., F. Chai, C. Y. Zhang, B. Q. Huang, Y. W. Jiang, and J. Y. Hu, 2011: An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait. Cont. Shelf Res., 31 (Suppl.), S3S12, https://doi.org/10.1016/j.csr.2011.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, H. J., Y. L. Hsien, M. S. Jeng, W. S. Tsai, W. C. Su, and C. A. Chen, 2008: Tropical fishes killed by the cold. Coral Reefs, 27, 599, https://doi.org/10.1007/s00338-008-0378-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J. Y., H. S. Hong, Z. Z. Chen, Z. G. He, J. S. Hong, and H. X. Liang, 1999: Analysis on feature of temperature and salinity in the northern Taiwan Straits during February–March, 1998 (in Chinese). Mar. Sci. Bull., 1, 6975.

    • Search Google Scholar
    • Export Citation
  • Hu, J. Y., H. Kawamura, C. Y. Li, H. S. Hong, and Y. W. Jiang, 2010: Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr., 66, 591610, https://doi.org/10.1007/s10872-010-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1989: Characteristics of water temperature and salinity in north central Taiwan Strait (in Chinese). Mar. Sci., 6, 3338.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1984: Slope currents and “JEBAR.” J. Phys. Oceanogr., 14, 795810, https://doi.org/10.1175/1520-0485(1984)014<0795:SCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., and S. Y. Chao, 2003: Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: The Penghu Channel. Deep-Sea Res. II, 50, 11171126, https://doi.org/10.1016/S0967-0645(03)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., J. Wang, C. S. Chern, and S. Y. Chao, 2002: Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Syst., 35, 249268, https://doi.org/10.1016/S0924-7963(02)00130-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-A., Y.-C. Yang, Y.-L. Shen, Y. Chang, W.-S. Tsai, K.-W. Lan, and Y.-C. Kuo, 2014: Effects of an unusual cold-water intrusion in 2008 on the catch of coastal fishing methods around Penghu Islands, Taiwan. Terr. Atmos. Ocean. Sci., 25, 107120, https://doi.org/10.3319/TAO.2013.08.06.01(Oc).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefèvre, F., C. Le Provost, and F. H. Lyard, 2000: How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105, 87078725, https://doi.org/10.1029/1999JC900281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., J. Hu, S. Jan, Z. Wei, G. Fang, and Q. Zheng, 2006: Winter-spring fronts in Taiwan Strait. J. Geophys. Res., 111, C11S13, https://doi.org/10.1029/2005JC003203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., X. G. Guo, E. H. Liao, and Y. W. Jiang, 2018: Subtidal variability in the Taiwan Strait induced by combined forcing of winter monsoon and topography. Sci. China Earth Sci., 61, 483493, https://doi.org/10.1007/s11430-016-9132-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, E. H., Y. W. Jiang, L. Li, H. S. Hong, and X. H. Yan, 2013a: The cause of the 2008 cold disaster in the Taiwan Strait. Ocean Modell., 62, 110, https://doi.org/10.1016/j.ocemod.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, E. H., Y. W. Jiang, X. H. Yan, Z. Y. Chen, J. Wang, and L. P. Zhang, 2013b: Allocation of marine environmental carrying capacity in the Xiamen Bay. Mar. Pollut. Bull., 75, 2127, https://doi.org/10.1016/j.marpolbul.2013.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, E. H., W. F. Lu, X.-H. Yan, Y. W. Jiang, and A. Kidwell, 2015: The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep., 5, 16630, https://doi.org/10.1038/srep16630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, E. H., X.-H. Yan, and Y. Jiang, 2017: The role of coastal-trapped waves on the 2008 cold disaster in the Taiwan Strait. Ocean Dyn., 67, 611619, https://doi.org/10.1007/s10236-017-1042-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S. F., T. Y. Tang, S. Jan, and C. J. Chen, 2005: Taiwan Strait Current in winter. Cont. Shelf Res., 25, 10231042, https://doi.org/10.1016/j.csr.2004.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., X.-H. Yan, Y. Jiang, and Z. Zhang, 2016: Performance assessment for an operational ocean model of the Taiwan Strait. Ocean Modell., 102, 2744, https://doi.org/10.1016/j.ocemod.2016.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and J. Gan, 2014: Modeling study of variable upwelling circulation in the East China Sea: Response to a coastal promontory. J. Phys. Oceanogr., 44, 10781094, https://doi.org/10.1175/JPO-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, W., X.-H. Yan, and Y. Jiang, 2015: Winter bloom and associated upwelling northwest of the Luzon Island: A coupled physical-biological modeling approach. J. Geophys. Res. Oceans, 120, 533546, https://doi.org/10.1002/2014JC010218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., L. Y. Oey, and T. Ezer, 1998: Sigma coordinate pressure gradient errors and the seamount problem. J. Atmos. Oceanic Technol., 15, 11221131, https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301305, https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., Y.-C. Hsin, and C.-R. Wu, 2010: Why does the Kuroshio northeast of Taiwan shift shelfward in winter? Ocean Dyn., 60, 413426, https://doi.org/10.1007/s10236-009-0259-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., M. C. Chang, Y. L. Chang, Y. C. Lin, and F. H. Xu, 2013: Decadal warming of coastal China seas and coupling with winter monsoon and currents. Geophys. Res. Lett., 40, 62886292, https://doi.org/10.1002/2013GL058202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., Y. L. Chang, Y. C. Lin, M. C. Chang, S. Varlamov, and Y. Miyazawa, 2014: Cross flows in the Taiwan Strait in winter. J. Phys. Oceanogr., 44, 801817, https://doi.org/10.1175/JPO-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, A. J., X. F. Wan, X. G. Guo, and C. S. Jing, 2013: Responses of the Zhe-Min coastal current adjacent to Pingtan Island to the wintertime monsoon relaxation in 2006 and its mechanism. Sci. China Earth Sci., 56, 386396, https://doi.org/10.1007/s11430-012-4429-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Y., J. D. Xu, X. G. Guo, N. Lin, and X. W. Zhou, 2012: Temperature inversion in the Taiwan Strait during northeast monsoon. Acta Oceanogr. Sin., 34, 1322.

    • Search Google Scholar
    • Export Citation
  • Shao, H., Y. Li, and L. Li, 2011: Sun glitter imaging of submarine sand waves on the Taiwan Banks: Determination of the relaxation rate of short waves. J. Geophys. Res., 116, C06024, https://doi.org/10.1029/2010JC006798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H. G., 1978: The situations and reviews of the mass mortalities due to freeze during winter time in Pescadores (in Chinese). China Fish Mon., 302, 2426.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Y. Oey, 2016: Seasonal exchanges of the Kuroshio and shelf waters and their impacts on the shelf currents of the East China Sea. J. Phys. Oceanogr., 46, 16151632, https://doi.org/10.1175/JPO-D-15-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Hong, Y. Jiang, F. Chai, and X.-H. Yan, 2013: Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach. J. Geophys. Res. Oceans, 118, 41844200, https://doi.org/10.1002/jgrc.20300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Hong, and Y. Jiang, 2016: A coupled physical–biological modeling study of the offshore phytoplankton bloom in the Taiwan Strait in winter. J. Sea Res., 107, 1224, https://doi.org/10.1016/j.seares.2015.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and J. S. Allen, 2009: Coastal wind-driven circulation in the vicinity of a bank. Part I: Modeling flow over idealized symmetric banks. J. Phys. Oceanogr., 39, 12731297, https://doi.org/10.1175/2008JPO3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., 1982: Climatic characteristics of the Taiwan Strait (in Chinese). J. Oceanogr. Taiwan Strait, 1, 1518.

  • Wu, C. R., and Y. C. Hsin, 2005: Volume transport through the Taiwan Strait: A numerical study. Terr. Atmos. Oceanic Sci., 16, 377391, https://doi.org/10.3319/TAO.2005.16.2.377(Oc).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., 2015: Cross-shelf penetrating fronts: A response of buoyant coastal water to ambient pycnocline undulation. J. Geophys. Res. Oceans, 120, 51015119, https://doi.org/10.1002/2014JC010686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, H., X. G. Guo, and R. S. Wu, 2002: Summarization of studies on hydrographic characteristics in Taiwan Strait (in Chinese). J. Oceanogr. Taiwan Strait, 21, 126138.

    • Search Google Scholar
    • Export Citation
  • Yang, J. Y., 2007: An oceanic current against the wind: How does Taiwan Island steer warm water into the East China Sea? J. Phys. Oceanogr., 37, 25632569, https://doi.org/10.1175/JPO3134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, D., L. Li, and X. Guo, 2013: Seasonal and interannual variations of surface current in the southern Taiwan Strait to the west of Taiwan shoals. Chin. Sci. Bull., 58, 41714178, https://doi.org/10.1007/s11434-013-5907-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 53
PDF Downloads 28 28 28

The Deflection of the China Coastal Current over the Taiwan Bank in Winter

View More View Less
  • 1 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China, and College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware
  • | 2 National Taiwan University, Jhongli City, Taiwan, and Princeton University, Princeton, New Jersey
  • | 3 College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
  • | 4 Third Institute of Oceanography, State Oceanic Administration, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
  • | 5 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
Restricted access

Abstract

In winter, an offshore flow of the coastal current can be inferred from satellite and in situ data over the western Taiwan Bank. The dynamics related to this offshore flow are examined here using observations as well as analytical and numerical models. The currents can be classified into three regimes. The downwind (i.e., southward) cold coastal current remains attached to the coast when the northeasterly wind stress is stronger than a critical value depending on the upwind (i.e., northward) large-scale pressure gradient force. By contrast, an upwind warm current appears over the Taiwan Bank when the wind stress is less than the critical pressure gradient force. The downwind coastal current and upwind current converge and the coastal current deflects offshore onto the bank during a moderate wind. Analysis of the vorticity balance shows that the offshore transport is a result of negative bottom stress curl that is triggered by the positive vorticity of the two opposite flows. The negative bottom stress curl is reinforced by the gentle slope over the bank, which enhances the offshore current. Composite analyses using satellite observations show cool waters with high chlorophyll in the offshore current under moderate wind. The results of composite analyses support the model findings and may explain the high productivity over the western bank in winter.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0037.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuwu Jiang, ywjiang@xmu.edu.cn

Abstract

In winter, an offshore flow of the coastal current can be inferred from satellite and in situ data over the western Taiwan Bank. The dynamics related to this offshore flow are examined here using observations as well as analytical and numerical models. The currents can be classified into three regimes. The downwind (i.e., southward) cold coastal current remains attached to the coast when the northeasterly wind stress is stronger than a critical value depending on the upwind (i.e., northward) large-scale pressure gradient force. By contrast, an upwind warm current appears over the Taiwan Bank when the wind stress is less than the critical pressure gradient force. The downwind coastal current and upwind current converge and the coastal current deflects offshore onto the bank during a moderate wind. Analysis of the vorticity balance shows that the offshore transport is a result of negative bottom stress curl that is triggered by the positive vorticity of the two opposite flows. The negative bottom stress curl is reinforced by the gentle slope over the bank, which enhances the offshore current. Composite analyses using satellite observations show cool waters with high chlorophyll in the offshore current under moderate wind. The results of composite analyses support the model findings and may explain the high productivity over the western bank in winter.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0037.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuwu Jiang, ywjiang@xmu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 669.61 KB)
Save