• Chen, G. X., Y. J. Hou, and X. Q. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2011JD016244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., J. Gan, Q. Xie, X. Chu, D. Wang, and Y. Hou, 2012: Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res., 117, C05021, https://doi.org/10.1029/2011JC007724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, C. H., J. H. Hu, R. L. Centurioni, and P. P. Niiler, 2008: Mesoscale Dongsha cyclonic eddy in the northern South China Sea by drifter and satellite observations. J. Geophys. Res., 113, C04018, https://doi.org/10.1029/2007JC004542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., C. W. Fan, C. J. Lozano, and J. L. Kerling, 1998: An airborne expendable bathythermograph survey of the South China Sea, May 1995. J. Geophys. Res., 103, 21 63721 652, https://doi.org/10.1029/98JC02096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X. Q., H. J. Xue, Y. Q. Qi, G. X. Chen, Q. W. Mao, D. X. Wang, and F. Chai, 2014: An exceptional anticyclonic eddy in the South China Sea in 2010. J. Geophys. Res. Oceans, 119, 881897, https://doi.org/10.1002/2013JC009314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., X. Lin, Y. Liu, F. Nencioli, Y. Chao, Y. Guan, T. Dickey, and J. McWilliams, 2012: Three-dimensional eddy analysis in the Southern California Bight. J. Geophys. Res., 117, C00H14, https://doi.org/10.1029/2011JC007354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G., 1977: The application of linear quasi-geostrophic dynamics to Gulf Stream rings. J. Phys. Oceanogr., 7, 365379, https://doi.org/10.1175/1520-0485(1977)007<0365:TAOLQD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., H. Kawamura, H. Hong, and Y. Qi, 2000: A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr., 56, 607624, https://doi.org/10.1023/A:1011117531252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. R., Q. Wang, W. D. Zhou, and S. Q. Zhou, 2016: A study of the cross-shelf flow around Dongsha Island in the South China Sea in winter using a diagnostic model (in Chinese with English abstract). J. Trop. Oceanogr., 35 (6), 19.

    • Search Google Scholar
    • Export Citation
  • Huang, X. R., Q. Wang, W. D. Zhou, and S. Q. Zhou, 2017: Model diagnostic analysis of cross-shelf flow in the northern South China Sea (in Chinese with English abstract). Chin. Sci. Bull., 62, 10591070, https://doi.org/10.1360/N972016-00570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., and Q. Liu, 2004: Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr., 60, 10631069, https://doi.org/10.1007/s10872-005-0014-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. D. Nowlin, and J. L. Su, 1998: Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. I, 45, 14691482, https://doi.org/10.1016/S0967-0637(98)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., L. Li, M. Lin, and W. Cai, 2002: Observation of mesoscale eddy fields in the sea southwest of Taiwan by TOPEX/Poseidon altimeter data (in Chinese with English abstract). Acta Oceanol. Sin., 24, 163170.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Dong, Y. Guan, D. Chen, J. McWilliams, and F. Nencioli, 2012: Eddy analysis in a zonal band in the North Pacific Ocean. Deep-Sea Res. I, 68, 5467, https://doi.org/10.1016/j.dsr.2012.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, K. M., and W. H. F. Smith, 2006: An evaluation of publicity available global bathymetry grids. Mar. Geophys. Res., 27, 1934, https://doi.org/10.1007/s11001-005-2095-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizobata, K., J. Wang, and S.-I. Saitoh, 2006: Eddy-induced cross-slope exchange maintaining summer high productivity of the Bering Sea shelf break. J. Geophys. Res., 111, C10017, https://doi.org/10.1029/2005JC003335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, X. Xiu, F. Chai, M. Shi, and P. Guo, 2011: Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res., 116, C12045, https://doi.org/10.1029/2011JC007386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. M. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., Y. L. Jia, E. Chassignet, and A. Bozec, 2011: Fast wind-induced migration of leddies in the South China Sea. J. Phys. Oceanogr., 41, 16831693, https://doi.org/10.1175/2011JPO4530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., and H. C. Lee, 2002: Deep eddy energy and topographic Rossby waves in the Gulf of Mexico. J. Phys. Oceanogr., 32, 34993527, https://doi.org/10.1175/1520-0485(2002)032<3499:DEEATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peliz, Á., A. M. P. Santos, P. B. Oliveira, and J. Dubert, 2004: Extreme cross-shelf transport induced by eddy interactions southwest of Iberia in winter 2001. Geophys. Res. Lett., 31, L08301, https://doi.org/10.1029/2004GL019618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr., 35, 458473, https://doi.org/10.1175/JPO2696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2000: Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 14501460, https://doi.org/10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y. Q., and Coauthors, 2016: Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Sci. Rep., 6, 24338, https://doi.org/10.1038/srep24338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D., 1986: A numerical study of Loop Current eddy interaction with topography in the western Gulf of Mexico. J. Phys. Oceanogr., 16, 12601272, https://doi.org/10.1175/1520-0485(1986)016<1260:ANSOLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., J. Lu, Y. Hou, G. Fang, Z. Wei, and B. Yin, 2002: Analysis of satellite-tracked drifting buoys in the South China Sea (in Chinese with English abstract). Oceanol. Limnol. Sin., 33, 121127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., G. D. Rowe, L. M. Rothstein, and I. Ginis, 2003: Baroclinic eddy interactions with continental slopes and shelves. J. Phys. Oceanogr., 33, 283291, https://doi.org/10.1175/1520-0485(2003)033<0283:BEIWCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1977: Observation of Rossby waves near site D. Prog. Oceanogr., 7, 135162, https://doi.org/10.1016/0079-6611(77)90003-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., H. Z. Xu, J. Lin, and J. Y. Hu, 2008: Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J. Oceanogr., 64, 925935, https://doi.org/10.1007/s10872-008-0076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., B. Hong, J. P. Gan, and H. Z. Xu, 2010: Numerical investigation on propulsion of the counter-wind current in the northern South China Sea in winter. Deep-Sea Res. I, 57, 12061221, https://doi.org/10.1016/j.dsr.2010.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., Q. Wang, W. Zhou, S. Cai, L. Li, and B. Hong, 2013a: An analysis of the current deflection around Dongsha Islands in the northern South China Sea. J. Geophys. Res. Oceans, 118, 490501, https://doi.org/10.1029/2012JC008429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., and Coauthors, 2013b: Progress of regional oceanography study associated with western boundary current in the South China Sea. Chin. Sci. Bull., 58, 12051215, https://doi.org/10.1007/s11434-012-5663-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., Y. Shu, H. Xue, J. Hu, J. Chen, W. Zhuang, T. T. Zu, and J. Xu, 2014: Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea. J. Geophys. Res. Oceans, 119, 25502567, https://doi.org/10.1002/2013JC009172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., C. J. Koblinsky, and S. Howden, 2000: Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res. I, 47, 681708, https://doi.org/10.1016/S0967-0637(99)00068-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., Y. X. Wang, W. D. Zhou, D. X. Wang, D. D. Sui, and J. Chen, 2015a: Dynamic of the upper cross isobaths flow on the northern South China Sea in summer. Aquat. Ecosyst. Health Manage., 18, 357366, https://doi.org/10.1080/14634988.2015.1112124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., L. Zeng, W. Zhou, Q. Xie, S. Cai, J. Yao, and D. Wang, 2015b: Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. J. Geophys. Res. Oceans, 120, 517532, https://doi.org/10.1002/2014JC009814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, S., and M. Inoue, 2000: Loop Current rings and the deep circulation in the Gulf of Mexico. J. Geophys. Res., 105, 16 95116 959, https://doi.org/10.1029/2000JC900054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104, 13 23513 250, https://doi.org/10.1029/1999JC900062.

  • Xiu, P., F. Chai, L. Shi, H. J. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. Z., Z. Qiu, and H. C. Chen, 1982: The general descriptions of the horizontal circulation in the South China Sea (in Chinese with English abstract). Proceedings of the 1980 Symposium on Hydrometeorology of the Chinese Society of Oceanology and Limnology, Science Press, 137–145.

  • Yang, H. J., and Q. Y. Liu, 2003: Forced Rossby wave in the northern South China Sea. Deep-Sea Res. I, 50, 917926, https://doi.org/10.1016/S0967-0637(03)00074-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., P. Shi, D. Wang, and Y. Qi, 2000: Numerical study about the mesoscale multi-eddy system in the northern South China Sea in winter (in Chinese with English abstract). Acta Oceanol. Sin., 22 (1), 2734.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y. X. Wang, J. P. Sui, W. D. Zhou, and Q. Wang, 2016: Slowdown of the topography trapped wave propagation by the Dongsha Islands in the northern South China Sea. Ocean Dyn., 66, 1117, https://doi.org/10.1007/s10236-015-0904-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., W. Han, and D. Hu, 2006: Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111, C11007, https://doi.org/10.1029/2005JC003412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., W. Han, and D. Hu, 2007: Anti-cyclonic eddies northwest of Luzon in summer–fall observed by satellite altimeters. Geophys. Res. Lett., 34, L13610, https://doi.org/10.1029/2007GL029401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. W. Tian, B. Qiu, W. Zhao, P. Chang, D. X. Wu, and X. Q. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Search Google Scholar
    • Export Citation
  • Zhuang, W., Y. Du, D. X. Wang, Q. Xie, and S. P. Xie, 2010: Pathways of mesoscale variability in the South China Sea. Chin. J. Oceanol. Limnol., 28, 10551067, https://doi.org/10.1007/s00343-010-0035-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zu, T. T., D. X. Wang, C. X. Yan, I. Belkin, W. Zhuang, and J. Chen, 2013: Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dyn., 63, 519531, https://doi.org/10.1007/s10236-013-0612-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 13 13 13

Observed Cross-Shelf Flow Induced by Mesoscale Eddies in the Northern South China Sea

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Restricted access

Abstract

Cross-shelf flow induced by mesoscale eddies has been investigated in the northern South China Sea (NSCS) using velocity observations from Long Ranger ADCP moorings. Mesoscale eddies influenced the three mooring stations during almost all the observation period. Four quadrants have been defined with the mooring location as the origin, and it is found that warm (cold) mesoscale eddies induce onshore (offshore) movement in the eastern two quadrants and offshore (onshore) movement in the western two quadrants. When an eddy propagates past a mooring station, net cross-shelf flow at the mooring station can be induced by asymmetry in the horizontal and vertical structure of the eddy and by its evolution. As an eddy propagates westward, its shape changes continually and the vertical modes also transform from high to lower modes, which contributes to the net cross-shelf flow. Based on the quasigeostrophic potential vorticity equation, it is confirmed that the net cross-shelf flow is mainly induced by the eddy evolution and suppressed by nonlinear effect. Because of dispersion characteristics of the mesoscale eddy, barotropic mode will restructure at the baroclinic mode area after separating from the baroclinic mode, which will be enhanced by topography slope.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dongxiao Wang, dxwang@scsio.ac.cn

Abstract

Cross-shelf flow induced by mesoscale eddies has been investigated in the northern South China Sea (NSCS) using velocity observations from Long Ranger ADCP moorings. Mesoscale eddies influenced the three mooring stations during almost all the observation period. Four quadrants have been defined with the mooring location as the origin, and it is found that warm (cold) mesoscale eddies induce onshore (offshore) movement in the eastern two quadrants and offshore (onshore) movement in the western two quadrants. When an eddy propagates past a mooring station, net cross-shelf flow at the mooring station can be induced by asymmetry in the horizontal and vertical structure of the eddy and by its evolution. As an eddy propagates westward, its shape changes continually and the vertical modes also transform from high to lower modes, which contributes to the net cross-shelf flow. Based on the quasigeostrophic potential vorticity equation, it is confirmed that the net cross-shelf flow is mainly induced by the eddy evolution and suppressed by nonlinear effect. Because of dispersion characteristics of the mesoscale eddy, barotropic mode will restructure at the baroclinic mode area after separating from the baroclinic mode, which will be enhanced by topography slope.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dongxiao Wang, dxwang@scsio.ac.cn
Save