• Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, https://doi.org/10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite I: Eady spindown. Ocean Modell., 64, 1228, https://doi.org/10.1016/j.ocemod.2012.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., D. W. J. Thompson, and T. G. Sheperd, 2013: Up-gradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett., 40, 59885993, https://doi.org/10.1002/2013GL057728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. S., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, https://doi.org/10.1002/qj.49709239302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., and J. S. Frederiksen, 1987: Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech., 175, 157181, https://doi.org/10.1017/S002211208700034X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., J. Shukla, and K. C. Mo, 1981: Comparison of a barotropic blocking theory with observation. J. Atmos. Sci., 38, 762779, https://doi.org/10.1175/1520-0469(1981)038<0762:COABBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., 2018: A barotropic model of eddy saturation. J. Phys. Oceanogr., 48, 397411, https://doi.org/10.1175/JPO-D-17-0182.1.

  • Constantinou, N. C., and W. R. Young, 2017: Beta-plane turbulence above monoscale topography. J. Fluid Mech., 827, 415447, https://doi.org/10.1017/jfm.2017.482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Philips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, https://doi.org/10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., 2010: Parameterising meso-scale eddy momentum fluxes based on potential vorticity mixing and a gauge term. Ocean Modell., 32, 5871, https://doi.org/10.1016/j.ocemod.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, https://doi.org/10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, https://doi.org/10.1002/qj.49709640802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., 1984: Parameterization of the eddy fluxes of the quasi-geostrophic potential vorticity in zonal flows. Dokl. Acad. Nauk USSR, 277, 972976.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., 1987: Influence of bottom topography on the eddy transfer coefficient. Izv. Acad. Nauk USSR, Fiz. Atmos. Okeana, 23, 200208.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26, 753774, https://doi.org/10.1175/1520-0485(1996)026<0753:TDOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, B. Sinha, and J.-O. Wolff, 1997: Parameterization of mesoscale eddy fluxes in zonal ocean flows. J. Mar. Res., 55, 11271162, https://doi.org/10.1357/0022240973224076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., S. Danilov, and D. Olbers, 2008: Eddies in numerical models of the Southern Ocean. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 177–198.

    • Crossref
    • Export Citation
  • Ivchenko, V. O., B. Sinha, V. B. Zalesny, R. Marsh, and A. T. Blaker, 2013: Influence of bottom topography on integral constraints in zonal flows with parameterized potential vorticity fluxes. J. Phys. Oceanogr., 43, 311323, https://doi.org/10.1175/JPO-D-12-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., S. Danilov, B. Sinha, and J. Schroeter, 2014a: Integral constraints for momentum and energy in zonal flows with parameterized potential vorticity fluxes: Governing parameters. J. Phys. Oceanogr., 44, 922943, https://doi.org/10.1175/JPO-D-13-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., S. Danilov, and J. Shroeter, 2014b: Comparison of the effect of parameterized eddy fluxes of thickness and potential vorticity. J. Phys. Oceanogr., 44, 24702484, https://doi.org/10.1175/JPO-D-13-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin, 1986: Synoptic Eddies in the Ocean. D. Reidel Publishing Company, 433 pp.

    • Crossref
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer: Part I. Theory. J. Mar. Res., 55, 11711197, https://doi.org/10.1357/0022240973224102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. R., D. P. Marshall, and J. Shipton, 2015: On the dynamical influence of ocean eddy potential vorticity fluxes. Ocean Modell., 92, 169182, https://doi.org/10.1016/j.ocemod.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, J., J. R. Maddison, and D. P. Marshall, 2016: A new gauge-invariant method for diagnosing eddy diffusivities. Ocean Modell., 104, 252268, https://doi.org/10.1016/j.ocemod.2016.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204, https://doi.org/10.1016/j.ocemod.2010.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, https://doi.org/10.1175/JPO-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., 1981: On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 257271, https://doi.org/10.1175/1520-0485(1981)011<0257:OTPOGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 5–15.

    • Crossref
    • Export Citation
  • McWilliams, J. C., and J. S. Chow, 1981: Equilibrium geostrophic turbulence I: A reference solution in a β-plane channel. J. Phys. Oceanogr., 11, 921949, https://doi.org/10.1175/1520-0485(1981)011<0921:EGTIAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. S. Chow, 1978: A description of numerical Antarctic circumpolar currents. Dyn. Atmos. Oceans, 2, 213291, https://doi.org/10.1016/0377-0265(78)90018-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., 2005: On the role of eddy mixing in the transport of zonal ocean currents. Marine Turbulence: Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 630 pp.

  • Olbers, D., J. Wolff, and C. Voelker, 2000: Eddy fluxes and second-order moment balances for nonhomogeneous quasigeostrophic turbulence in wind-driven zonal flows. J. Phys. Oceanogr., 30, 16451668, https://doi.org/10.1175/1520-0485(2000)030<1645:EFASOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., and P. Gent, 2011: An eddy closure for potential vorticity. Ocean Modell., 39, 125134, https://doi.org/10.1016/j.ocemod.2011.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, B., 1993: The influence of mesoscale eddies and topography on Southern Ocean flow. Ph.D. thesis, Southampton University, 197 pp.

  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, https://doi.org/10.1126/science.1139540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951, https://doi.org/10.1002/qj.49712354008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, https://doi.org/10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wardle, R., and J. Marshall, 2000: Representation of eddies in primitive equation models by a PV flux. J. Phys. Oceanogr., 30, 24812503, https://doi.org/10.1175/1520-0485(2000)030<2481:ROEIPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welander, P., 1973: Lateral friction in the ocean as an effect of potential vorticity mixing. Geophys. Fluid Dyn., 5, 173189, https://doi.org/10.1080/03091927308236114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier-Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264, https://doi.org/10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. B., and M. E. McIntyre, 2010: A general theorem on angular-momentum changes due to potential vorticity mixing and on potential-energy changes due to buoyancy mixing. J. Atmos. Sci., 67, 12611274, https://doi.org/10.1175/2009JAS3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1995: The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements. J. Geophys. Res., 100, 24 89524 910, https://doi.org/10.1029/95JC01783.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 3 3 3

Is the Coefficient of Eddy Potential Vorticity Diffusion Positive? Part I: Barotropic Zonal Channel

View More View Less
  • 1 University of Southampton, and National Oceanography Centre, Southampton, United Kingdom
  • | 2 Institute of Numerical Mathematics, Moscow, Russia
  • | 3 National Oceanography Centre, Southampton, United Kingdom
Restricted access

Abstract

The question of whether the coefficient of diffusivity of potential vorticity by mesoscale eddies is positive is studied for a zonally reentrant barotropic channel using the quasigeostrophic approach. The topography is limited to the first mode in the meridional direction but is unlimited in the zonal direction. We derive an analytic solution for the stationary (time independent) solution. New terms associated with parameterized eddy fluxes of potential vorticity appear both in the equations for the mean zonal momentum balance and in the kinetic energy balance. These terms are linked with the topographic form stress exerted by parameterized eddies. It is demonstrated that in regimes with zonal flow (analogous to the Antarctic Circumpolar Current), the coefficient of eddy potential vorticity diffusivity must be positive.

Retired.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vladimir Ivchenko, voi@noc.soton.ac.uk

Abstract

The question of whether the coefficient of diffusivity of potential vorticity by mesoscale eddies is positive is studied for a zonally reentrant barotropic channel using the quasigeostrophic approach. The topography is limited to the first mode in the meridional direction but is unlimited in the zonal direction. We derive an analytic solution for the stationary (time independent) solution. New terms associated with parameterized eddy fluxes of potential vorticity appear both in the equations for the mean zonal momentum balance and in the kinetic energy balance. These terms are linked with the topographic form stress exerted by parameterized eddies. It is demonstrated that in regimes with zonal flow (analogous to the Antarctic Circumpolar Current), the coefficient of eddy potential vorticity diffusivity must be positive.

Retired.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vladimir Ivchenko, voi@noc.soton.ac.uk
Save