• Bernstein, W. N., K. A. Hughen, C. Langdon, D. C. McCorkle, and S. Lentz, 2016: Environmental controls on daytime net community calcification on a Red Sea reef flat. Coral Reefs, 35, 697711, https://doi.org/10.1007/s00338-015-1396-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brander, R. W., P. S. Kench, and D. Hart, 2004: Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Mar. Geol., 207, 169184, https://doi.org/10.1016/j.margeo.2004.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, D. P., P. Nielsen, N. Cartwright, M. R. Gourlay, and T. E. Baldock, 2006: Atoll lagoon flushing forced by waves. Coastal Eng., 53, 691704, https://doi.org/10.1016/j.coastaleng.2006.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronado, C., J. Candela, R. Iglesias-Prieto, J. Sheinbaum, M. Lopez, and F. J. Ocampo-Torres, 2007: On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26, 149163, https://doi.org/10.1007/s00338-006-0175-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixen, M., F. Hatipoglu, B. Mutlu Sumer, and J. Fredsoe, 2008: Wave boundary layer over a stone-covered bed. Coastal Eng., 55, 120, https://doi.org/10.1016/j.coastaleng.2007.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., R. T. Guza, S. Elgar, and T. H. C. Herbers, 1998: Alongshore momentum balances in the nearshore. J. Geophys. Res., 103, 15 66715 676, https://doi.org/10.1029/98JC01270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., R. T. Guza, S. Elgar, and T. H. C. Herbers, 2000: Velocity moments in alongshore bottom stress parameterizations. J. Geophys. Res., 105, 86738686, https://doi.org/10.1029/2000JC900022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerritsen, F., 1980: Wave attenuation and wave set-up on a coastal reef. Proc. 17th Int. Conf. on Coastal Engineering, Reston, VA, American Society of Civil Engineering, 444–461.

    • Crossref
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1986: The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech., 18, 265305, https://doi.org/10.1146/annurev.fl.18.010186.001405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D. L., and A. Vila-Concejo, 2013: Wave transformation on a coral reef rubble platform. Proc. Int. Coastal Symp., Plymouth, United Kingdom, Plymouth University, 506–510, https://doi.org/10.2112/SI65-086.1.

    • Crossref
    • Export Citation
  • Hearn, C. J., 1999: Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res., 104, 30 00730 019, https://doi.org/10.1029/1999JC900262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hearn, C. J., 2011: Perspectives in coral reef hydrodynamics. Coral Reefs, 30, 19, https://doi.org/10.1007/s00338-011-0752-4.

  • Hench, J. L., J. J. Leichter, and S. G. Monismith, 2008: Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr., 53, 26812694, https://doi.org/10.4319/lo.2008.53.6.2681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jago, O. K., P. S. Kench, and R. W. Brander, 2007: Field observations of wave-driven water-level gradients across a coral reef flat. J. Geophys. Res., 112, C06027, https://doi.org/10.1029/2006JC003740.

    • Search Google Scholar
    • Export Citation
  • Kraines, S. B., T. Yanagi, M. Isobi, and H. Komiyama, 1998: Wind-wave driven circulations on the coral reef at Bora Bay, Miyako Island. Coral Reefs, 17, 133143, https://doi.org/10.1007/s003380050107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. T. Guza, S. Elgar, F. Feddersen, and T. H. C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, https://doi.org/10.1029/1999JC900101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., J. H. Churchill, K. A. Davis, J. T. Farrar, J. Pineda, and V. Starczak, 2016a: The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea. J. Geophys. Res. Oceans, 121, 13601376, https://doi.org/10.1002/2015JC011141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., J. H. Churchill, K. A. Davis, and J. T. Farrar, 2016b: Surface gravity wave transformation across a platform coral reef in the Red Sea. J. Geophys. Res. Oceans, 121, 693705, https://doi.org/10.1002/2015JC011142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., K. A. Davis, J. H. Churchill, and T. M. DeCarlo, 2017: Coral reef drag coefficients—Water depth dependence. J. Phys. Oceanogr., 47, 10611075, https://doi.org/10.1175/JPO-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., and J. L. Falter, 2015: Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci., 7, 4366, https://doi.org/10.1146/annurev-marine-010814-015834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, and M. J. Atkinson, 2005: Spectral wave dissipation over a barrier reef. J. Geophys. Res., 110, C04001, https://doi.org/10.1029/2004JC002711.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson, 2009: Wave-driven circulation of a coastal reef–lagoon system. J. Phys. Oceanogr., 39, 873893, https://doi.org/10.1175/2008JPO3958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugo-Fernandez, A., H. H. Roberts, and J. N. Suhayda, 1998a: Wave transformations across a Caribbean fringing-barrier coral reef. Cont. Shelf Res., 18, 10991124, https://doi.org/10.1016/S0278-4343(97)00020-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugo-Fernandez, A., H. H. Roberts, and W. J. Wiseman, 1998b: Tide effects on wave attenuation and wave setup on a Caribbean coral reef. Estuarine Coastal Shelf Sci., 47, 385393, https://doi.org/10.1006/ecss.1998.0365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathisen, P. P., and O. S. Madsen, 1996: Waves and currents over a fixed rippled bed: 2. Bottom and apparent roughness experienced by currents in the presence of waves. J. Geophys. Res., 101, 16 54316 550, https://doi.org/10.1029/96JC00955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., 2007: Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39, 3755, https://doi.org/10.1146/annurev.fluid.38.050304.092125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., L. M. M. Herdman, S. Ahmerkamp, and J. L. Hench, 2013: Wave transformation and wave-driven flow across a steep coral reef. J. Phys. Oceanogr., 43, 13561379, https://doi.org/10.1175/JPO-D-12-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., J. S. Rogers, D. Koweek, and R. B. Dunbar, 2015: Frictional wave dissipation on a remarkably rough reef. Geophys. Res. Lett., 42, 40634071, https://doi.org/10.1002/2015GL063804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nezu, I., and H. Nakagawa, 1993: Turbulence in Open-Channel Flows. A. A. Balkema, 281 pp.

  • Péquignet, A.-C., J. M. Becker, M. A. Merrifield, and S. J. Boc, 2011: The dissipation of wind wave energy across a fringing reef at Ipan, Guam. Coral Reefs, 30 (Suppl.), 7182, https://doi.org/10.1007/s00338-011-0719-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, H. H., S. P. Murray, and J. H. Suhayda, 1975: Physical processes in a fringing reef system. J. Mar. Res., 33, 233260.

  • Rosman, J. H., and J. L. Hench, 2011: A framework for understanding drag parameterizations for coral reefs. J. Geophys. Res., 116, C08025, https://doi.org/10.1029/2010JC006892.

    • Search Google Scholar
    • Export Citation
  • Symonds, G., K. P. Black, and I. R. Young, 1995: Wave-driven flow over shallow reefs. J. Geophys. Res., 100, 26392648, https://doi.org/10.1029/94JC02736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taebi, S., R. J. Lowe, C. B. Pattiaratchi, G. N. Ivey, G. Symonds, and R. Brinkman, 2011: Nearshore circulation in a tropical fringing reef system. J. Geophys. Res., 116, C02016, https://doi.org/10.1029/2010JC006439.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. J. Lentz, 2018: The bottom boundary layer. Annu. Rev. Mar. Sci., 10, 397410, https://doi.org/10.1146/annurev-marine-121916-063351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, O., J. M. Becker, M. A. Merrifield, A.-C. Pequignet, J. Aucan, S. J. Boc, and C. E. Pollock, 2010: Wave setup over a Pacific Island fringing reef. J. Geophys. Res., 115, C12066, https://doi.org/10.1029/2010JC006455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. G., and K. R. Thompson, 1983: Time-averaged forms of the nonlinear stress law. J. Phys. Oceanogr., 13, 341346, https://doi.org/10.1175/1520-0485(1983)013<0341:TAFOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1989: Wave transformations on coral reefs. J. Geophys. Res., 94, 99799989, https://doi.org/10.1029/JC094iC07p09779.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 11 11 11

Coral Reef Drag Coefficients—Surface Gravity Wave Enhancement

View More View Less
  • 1 Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Civil and Environmental Engineering, University of California, Irvine, Irvine, California
Restricted access

Abstract

A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1 Hz for 4–5 min. Depth-average current fluctuations U′ within each burst are dominated by wave orbital velocities uw that account for 80%–90% of the burst variance and have a magnitude of order 10 cm s−1, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (ρCdaUavg|Uavg|, where ρ is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw = 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [ρCda(Uavg + U′)|Uavg + U′|)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. J. Lentz, slentz@whoi.edu

Abstract

A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1 Hz for 4–5 min. Depth-average current fluctuations U′ within each burst are dominated by wave orbital velocities uw that account for 80%–90% of the burst variance and have a magnitude of order 10 cm s−1, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (ρCdaUavg|Uavg|, where ρ is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw = 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [ρCda(Uavg + U′)|Uavg + U′|)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. J. Lentz, slentz@whoi.edu
Save