• Alford, M., M. Gregg, and M. Merrifield, 2006: Structure, propagation and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018, https://doi.org/10.1175/JPO2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biton, E., J. Silverman, and H. Gildor, 2008: Observations and modeling of a pulsating density current. Geophys. Res. Lett., 35, L14603, https://doi.org/10.1029/2008gl034123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016: Cross-shelf exchange. Annu. Rev. Mar. Sci., 8, 5978, https://doi.org/10.1146/annurev-marine-010814-015717.

  • Cormack, D. E., G. P. Stone, and L. G. Leal, 1975: The effect of upper surface conditions on convection in a shallow cavity with differentially heated end-walls. Int. J. Heat Mass Transfer, 18, 635648, https://doi.org/10.1016/0017-9310(75)90275-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. A., and S. G. Monismith, 2011: The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr., 41, 22232241, https://doi.org/10.1175/2011JPO4344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. A., J. J. Leichter, J. L. Hench, and S. G. Monismith, 2008: Effects of western boundary current dynamics on the internal wave field of the southeast Florida shelf. J. Geophys. Res., 113, C09010, https://doi.org/10.1029/2007JC004699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrow, D. E., 2002: Coriolis effects and the thermal bar. J. Geophys. Res., 107, 3033, https://doi.org/10.1029/2000JC000727.

  • Farrow, D. E., 2013: Periodically driven circulation near the shore of a lake. Environ. Fluid Mech., 13, 243255, https://doi.org/10.1007/s10652-012-9261-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrow, D. E., and J. C. Patterson, 1993: On the response of a reservoir sidearm to diurnal heating and cooling. J. Fluid Mech., 246, 143161, https://doi.org/10.1017/S0022112093000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrow, D. E., and J. C. Patterson, 1994: The daytime circulation and temperature structure in a reservoir sidearm. Int. J. Heat Mass Transfer, 37, 19571968, https://doi.org/10.1016/0017-9310(94)90335-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., J. E. List, and C. R. Koh, 1979: Mixing in Inland and Coastal Waters. Academic Press, 302 pp.

  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 17971808, https://doi.org/10.1029/JC084iC04p01797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502, https://doi.org/10.1080/03091927009365783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herdman, L. M. M., J. L. Hench, and S. G. Monismith, 2015: Heat balance and thermally driven lagoon-ocean exchanges on a tropical reef system (Moorea, French Polynesia). J. Geophys. Res. Oceans, 120, 12331252, https://doi.org/10.1002/2014JC010145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, N. L., R. J. Lowe, G. Pawlak, D. A. Fong, and S. G. Monismith, 2008: Plume dispersion on a fringing coral reef system. Limnol. Oceanogr., 53, 22732286, https://doi.org/10.4319/lo.2008.53.5_part_2.2273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017: The effect of Stokes drift and transient rip currents on the inner shelf. Part I: No stratification. J. Phys. Oceanogr., 47, 227241, https://doi.org/10.1175/JPO-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leichter, J. J., S. R. Wing, S. L. Miller, and M. W. Denny, 1996: Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr., 41, 14901501, https://doi.org/10.4319/lo.1996.41.7.1490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leichter, J. J., H. L. Stewart, and S. L. Miller, 2003: Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr., 48, 13941407, https://doi.org/10.4319/lo.2003.48.4.1394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, https://doi.org/10.1175/2008JPO3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., K. A. Davis, J. H. Churchill, and T. M. DeCarlo, 2017: Coral reef drag coefficients—Water depth dependence. J. Phys. Oceanogr., 47, 10611075, https://doi.org/10.1175/JPO-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-T., 2015: Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake. Environ. Fluid Mech., 15, 161178, https://doi.org/10.1007/s10652-014-9368-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., and J. L. Falter, 2015: Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci., 7, 4366, https://doi.org/10.1146/annurev-marine-010814-015834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson, 2009: Wave-driven circulation of a coastal reef–lagoon system. J. Phys. Oceanogr., 39, 873893, https://doi.org/10.1175/2008JPO3958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, Y., C. Lei, and J. C. Patterson, 2009: Unsteady natural convection in a triangular enclosure induced by absorption of radiation—A revisit by improved scaling analysis. J. Fluid Mech., 622, 75102, https://doi.org/10.1017/S0022112008005077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, L., G. Pawlak, J. R. Wells, S. G. Monismith, and M. A. Merrifield, 2014: Diurnal cross-shore thermal exchange on a tropical forereef. J. Geophys. Res. Oceans, 119, 61016120, https://doi.org/10.1002/2013JC009621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., 2007: Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39, 3755, https://doi.org/10.1146/annurev.fluid.38.050304.092125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., J. Imberger, and M. L. Morison, 1990: Convective motions in the sidearm of a small reservoir. Limnol. Oceanogr., 35, 16761702, https://doi.org/10.4319/lo.1990.35.8.1676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., A. Genin, M. A. Reidenbach, G. Yahel, and J. R. Koseff, 2006: Thermally driven exchange between a coral reef and the adjoining ocean. J. Phys. Oceanogr., 36, 13321347, https://doi.org/10.1175/JPO2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlak, G., and Coauthors, 2009: Development, deployment, and operation of Kilo Nalu nearshore cabled observatory. OCEANS 2009, Bremen, Germany, IEEE, 10914940, https://doi.org/10.1109/OCEANSE.2009.5278149.

    • Crossref
    • Export Citation
  • Sevadjian, J., M. McManus, and G. Pawlak, 2010: Effects of physical structure and processes on thin zooplankton layers in Mamala Bay, Hawai’i. Mar. Ecol. Prog. Ser., 409, 95106, https://doi.org/10.3354/meps08614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. A., G. Rocheleau, M. A. Merrifield, S. Jaramillo, and G. Pawlak, 2016: Temperature variability caused by internal tides in the coral reef ecosystem of Hanauma Bay, Hawai’i. Cont. Shelf Res., 116, 112, https://doi.org/10.1016/j.csr.2016.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194, https://doi.org/10.1080/02723646.1981.10642213.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 149 0
PDF Downloads 272 169 0

Temporal Variability in Thermally Driven Cross-Shore Exchange: The Role of Semidiurnal Tides

View More View Less
  • 1 Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
  • | 2 Civil and Environmental Engineering, University of California, Irvine, Irvine, California
  • | 3 Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California
  • | 4 Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
Restricted access

Abstract

We examine temporal variability of thermally driven baroclinic cross-shore exchange in the context of a tropical fringing reef system focusing on the role of tidally driven alongshore flow. Ensemble diurnal phase averaging of cross-shore flow at the Kilo Nalu Observatory (KNO) in Oahu, Hawaii, shows a robust diurnal signal associated with an unsteady buoyancy/diffusive dynamic balance, although significant variability is observed at subdiurnal time scales. In particular, persistent fortnightly variability in the cross-shore diurnal flow pattern is consistent with modulation by the semidiurnal alongshore tidal flow. The alongshore flow plays a direct role in the cross-shore exchange momentum balance via Coriolis acceleration but also affects the cross-shore circulation indirectly via its influence on vertical turbulent diffusion. An idealized linear theoretical model for thermally driven cross-shore flow is formulated using the long-term time-averaged diurnal dynamic balance at KNO as a baseline. The model is driven at leading order by the surface heat flux, with contributions from the alongshore flow and cross-shore wind appearing as linear perturbations. Superposition of the idealized solutions for Coriolis and time-varying eddy viscosity perturbations are able to reproduce key aspects of the fortnightly variability. Modifying the model to consider a more realistic alongshore flow and considering effects of nightly convection lead to further improvements in comparisons with KNO observations. The ability of the theoretical approach to reproduce the fortnightly patterns indicates that semidiurnal variations in the alongshore flow are effective in modulating the cross-shore flow via Coriolis and vertical turbulent transport mechanisms.

Current affiliation: Physics of Aquatic Systems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geno Pawlak, pawlak@ucsd.edu

Abstract

We examine temporal variability of thermally driven baroclinic cross-shore exchange in the context of a tropical fringing reef system focusing on the role of tidally driven alongshore flow. Ensemble diurnal phase averaging of cross-shore flow at the Kilo Nalu Observatory (KNO) in Oahu, Hawaii, shows a robust diurnal signal associated with an unsteady buoyancy/diffusive dynamic balance, although significant variability is observed at subdiurnal time scales. In particular, persistent fortnightly variability in the cross-shore diurnal flow pattern is consistent with modulation by the semidiurnal alongshore tidal flow. The alongshore flow plays a direct role in the cross-shore exchange momentum balance via Coriolis acceleration but also affects the cross-shore circulation indirectly via its influence on vertical turbulent diffusion. An idealized linear theoretical model for thermally driven cross-shore flow is formulated using the long-term time-averaged diurnal dynamic balance at KNO as a baseline. The model is driven at leading order by the surface heat flux, with contributions from the alongshore flow and cross-shore wind appearing as linear perturbations. Superposition of the idealized solutions for Coriolis and time-varying eddy viscosity perturbations are able to reproduce key aspects of the fortnightly variability. Modifying the model to consider a more realistic alongshore flow and considering effects of nightly convection lead to further improvements in comparisons with KNO observations. The ability of the theoretical approach to reproduce the fortnightly patterns indicates that semidiurnal variations in the alongshore flow are effective in modulating the cross-shore flow via Coriolis and vertical turbulent transport mechanisms.

Current affiliation: Physics of Aquatic Systems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geno Pawlak, pawlak@ucsd.edu
Save