• Anderson, K., and Coauthors, 2004: The RED Experiment: An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull. Amer. Meteor. Soc., 85, 13551365, https://doi.org/10.1175/BAMS-85-9-1355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., A. A. Hinton, K. E. Prada, J. Hare, and C. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, https://doi.org/10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, https://doi.org/10.1175/BAMS-88-3-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation. J. Geophys. Res., 111, D23S20, https://doi.org/10.1029/2006JD007597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flügge, M., M. M. B. Paskyabi, J. Reuder, J. B. Edson, and A. J. Plueddemann, 2016: Comparison of direct covariance flux measurements from an offshore tower and a buoy. J. Atmos. Oceanic Technol., 33, 873890, https://doi.org/10.1175/JTECH-D-15-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, https://doi.org/10.1175/2010JPO4420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Geernaert, G. L., F. Hansen, and M. Courtney, 1993: Directional attributes of the ocean surface wind vector. J. Geophys. Res., 98, 16 57116 582, https://doi.org/10.1029/93JC01439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A., and C. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, https://doi.org/10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A.-S. Smedman, T. S. Hristov, W. M. Drennan, and K. K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, https://doi.org/10.1007/s10546-012-9776-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hristov, T., S. D. Miller, and C. A. Friehe, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422, 5558, https://doi.org/10.1038/nature01382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482, https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., K. Katsaros, and J. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including molecular constraints at the surface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and C. K. Thomas, 2016: Surface stress with non-stationary weak winds and stable stratification. Bound.-Layer Meteor., 159, 321, https://doi.org/10.1007/s10546-015-0111-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and T. Hristov, 2017: Is the influence of stability on the sea surface heat flux important? J. Phys. Oceanogr., 47, 689699, https://doi.org/10.1175/JPO-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Edson, J. Wilczak, J. Hare, and J. Højstrup, 2001: Vertical structure of turbulence in offshore flow during RASEX. Bound.-Layer Meteor., 100, 4761, https://doi.org/10.1023/A:1018982828967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., E. L Andreas, J. B. Edson, D. Vickers, J. Sun, and E. G. Patton, 2016: Coastal zone surface stress with stable stratification. J. Phys. Oceanogr., 46, 95105, https://doi.org/10.1175/JPO-D-15-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The Climode Field Campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 13371350, https://doi.org/10.1175/2009BAMS2706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S., 1998: The structure of turbulent and wave-induced wind fields over open-ocean waves. Ph.D. thesis, University of California, Irvine, 202 pp.

  • Miller, S., T. Hristov, and J. Edson, 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694, https://doi.org/10.1175/2008JTECHO547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oost, W. A., K. J. Komen, C. M. J. Jacobs, and C. van Oort, 2002: New evidence for a relationship between wind stress and wave age form measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, https://doi.org/10.1023/A:1014913624535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., and J. A. Smith, 1998: Removing wave effects from the wind stress vector. J. Geophys. Res., 103, 13631374, https://doi.org/10.1029/97JC02571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., J. A. Smith, and R. A. Weller, 1994: Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res., 99, 22 58922 596, https://doi.org/10.1029/94JC02215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., R. M. Samelson, L. Mahrt, and P. Barbour, 2005: A numerical modeling study of warm offshore flow over cool water. Mon. Wea. Rev., 133, 345361, https://doi.org/10.1175/MWR-2845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Högström, E. Sahlée, W. M. Drennan, K. K. Kaham, and H. Pettersson, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, https://doi.org/10.1175/2009JAS2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ström, L., and M. Tjernström, 2004: Variability in the summertime coastal marine atmospheric boundary-layer off California, USA. Quart. J. Roy. Meteor. Soc., 130, 423448, https://doi.org/10.1256/qj.03.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. R. French, 2016: Air–sea interactions in light of new understanding of air-land interactions. J. Atmos. Sci., 73, 39313949, https://doi.org/10.1175/JAS-D-15-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, and E. L. Andreas, 2015: Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability. J. Appl. Meteor. Climatol., 54, 691703, https://doi.org/10.1175/JAMC-D-14-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., D. Zhao, B. Liu, J. Zhang, and J. Huange, 2017: Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low to moderate wind conditions. J. Geophys. Res. Oceans, 122, 41234142, https://doi.org/10.1002/2016JC012399.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 21 21 21

On Estimating the Surface Wind Stress over the Sea

View More View Less
  • 1 NorthWest Research Associates, Corvallis, Oregon
  • | 2 Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
  • | 3 Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
  • | 4 Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Our study analyzes measurements primarily from two Floating Instrument Platform (FLIP) field programs and from the Air–Sea Interaction Tower (ASIT) site to examine the relationship between the wind and sea surface stress for contrasting conditions. The direct relationship of the surface momentum flux to U2 is found to be better posed than the relationship between and U, where U is the wind speed and is the friction velocity. Our datasets indicate that the stress magnitude often decreases significantly with height near the surface due to thin marine boundary layers and/or enhanced stress divergence close to the sea surface. Our study attempts to correct the surface stress estimated from traditional observational levels by using multiple observational levels near the surface and extrapolating to the surface. The effect of stability on the surface stress appears to be generally smaller than errors due to the stress divergence. Definite conclusions require more extensive measurements close to the sea surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Mahrt, mahrt@nwra.com

Abstract

Our study analyzes measurements primarily from two Floating Instrument Platform (FLIP) field programs and from the Air–Sea Interaction Tower (ASIT) site to examine the relationship between the wind and sea surface stress for contrasting conditions. The direct relationship of the surface momentum flux to U2 is found to be better posed than the relationship between and U, where U is the wind speed and is the friction velocity. Our datasets indicate that the stress magnitude often decreases significantly with height near the surface due to thin marine boundary layers and/or enhanced stress divergence close to the sea surface. Our study attempts to correct the surface stress estimated from traditional observational levels by using multiple observational levels near the surface and extrapolating to the surface. The effect of stability on the surface stress appears to be generally smaller than errors due to the stress divergence. Definite conclusions require more extensive measurements close to the sea surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Mahrt, mahrt@nwra.com
Save