• Androulidakis, Y., V. Kourafalou, G. Halliwell, M. Le Hénaff, H. Kang, M. Mehari, and R. Atlas, 2016: Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region. Ocean Dyn., 66, 15591588, https://doi.org/10.1007/s10236-016-0997-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chi, N.-H., R.-C. Lien, E. A. D’Asaro, and B. B. Ma, 2014: The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian oscillation events. J. Geophys. Res. Oceans, 119, 46384652, https://doi.org/10.1002/2014JC010192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montegut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112, C06011, https://doi.org/10.1029/2006JC003953.

    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., 1970: Linear theory on the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249272, https://doi.org/10.1080/03091927009365774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and Coauthors, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, https://doi.org/10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, O., J. Jouanno, and F. Durand, 2016: Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling? J. Geophys. Res. Oceans, 121, 21192141, https://doi.org/10.1002/2015JC011021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and J. K. Brewster, 2016: Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features. Dyn. Atmos. Oceans, 76, 306324, https://doi.org/10.1016/j.dynatmoce.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and G. R. Foltz, 2013: Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: The importance of zonal advection and vertical mixing. Geophys. Res. Lett., 40, 27372741, https://doi.org/10.1002/grl.50536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Lazar, and M. Lacarra, 2012: On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. J. Geophys. Res., 117, C02010, https://doi.org/10.1029/2011JC007435.

    • Search Google Scholar
    • Export Citation
  • Neetu, S., and Coauthors, 2012: Influence of upper‐ocean stratification on tropical cyclone‐induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, https://doi.org/10.1029/2012JC008433.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kurdyavtsev, and R. Sabia, 2014: Multisensor observations of the Amazon-Orinoco River plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, B. Jaimes, and J. K. Brewster, 2017: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy. J. Geophys. Res. Oceans, 122, 10571071, https://doi.org/10.1002/2016JC012339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and E. Uhlhorn, 2008: Loop Current response to Hurricanes Isidore and Lili. Mon. Wea. Rev., 136, 32483274, https://doi.org/10.1175/2007MWR2169.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., A. J. Mariano, S. D. Jacob, and E. H. Ryan, 1998: Mean and near-inertial ocean current response to Hurricane Gilbert. J. Phys. Oceanogr., 28, 858889, https://doi.org/10.1175/1520-0485(1998)028<0858:MANIOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vissa, N. K., A. N. V. Satyanarayana, and B. P. Kumar, 2013: Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci. J., 48, 279288, https://doi.org/10.1007/s12601-013-0026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, W. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 14
PDF Downloads 80 80 10

The Influence of the Barrier Layer on SST Response during Tropical Cyclone Wind Forcing Using Idealized Experiments

View More View Less
  • 1 Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

Multiple studies have shown that reduced sea surface temperature (SST) cooling occurs under tropical cyclones (TCs) where a fresh surface layer and subsurface halocline exist. Reduced SST cooling in these scenarios has been attributed to a barrier layer, an upper-ocean feature in the tropical global oceans in which a halocline resides within the isothermal mixed layer. Because upper-ocean stratification theoretically reduces ocean mixing induced by winds, the barrier layer is thought to reduce SST cooling during TC passage, sustaining heat and moisture fluxes into the storm. This research examines how both the inclusion of salinity and upper-ocean salinity stratification influences SST cooling for a variety of upper-ocean thermal regimes using one-dimensional (1D) ocean mixed layer (OML) models. The Kraus–Turner, Price–Weller–Pinkel, and Pollard–Rhines–Thompson 1D OML schemes are used to examine SST cooling and OML deepening during 30 m s−1 wind forcing (~category 1 TC) for both temperature-only and temperature–salinity stratification cases. Generally, the inclusion of salinity (a barrier layer) reduces SST cooling for all temperature regimes. However, results suggest that SST cooling sensitivities exist depending on thermal regime, salinity stratification, and the 1D OML model used. Upper-ocean thermal and haline characteristics are put into context of SST cooling with the creation of a barrier layer baroclinic wave speed to emphasize the influence of salinity stratification on upper-ocean response under TC wind forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johna E. Rudzin, jrudzin@rsmas.miami.edu

Abstract

Multiple studies have shown that reduced sea surface temperature (SST) cooling occurs under tropical cyclones (TCs) where a fresh surface layer and subsurface halocline exist. Reduced SST cooling in these scenarios has been attributed to a barrier layer, an upper-ocean feature in the tropical global oceans in which a halocline resides within the isothermal mixed layer. Because upper-ocean stratification theoretically reduces ocean mixing induced by winds, the barrier layer is thought to reduce SST cooling during TC passage, sustaining heat and moisture fluxes into the storm. This research examines how both the inclusion of salinity and upper-ocean salinity stratification influences SST cooling for a variety of upper-ocean thermal regimes using one-dimensional (1D) ocean mixed layer (OML) models. The Kraus–Turner, Price–Weller–Pinkel, and Pollard–Rhines–Thompson 1D OML schemes are used to examine SST cooling and OML deepening during 30 m s−1 wind forcing (~category 1 TC) for both temperature-only and temperature–salinity stratification cases. Generally, the inclusion of salinity (a barrier layer) reduces SST cooling for all temperature regimes. However, results suggest that SST cooling sensitivities exist depending on thermal regime, salinity stratification, and the 1D OML model used. Upper-ocean thermal and haline characteristics are put into context of SST cooling with the creation of a barrier layer baroclinic wave speed to emphasize the influence of salinity stratification on upper-ocean response under TC wind forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johna E. Rudzin, jrudzin@rsmas.miami.edu
Save