• Arief, D., and S. P. Murray, 1996: Low-frequency fluctuations in the Indonesian Throughflow through Lombok Strait. J. Geophys. Res., 101, 12 45512 464, https://doi.org/10.1029/96JC00051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1991: On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J. Geophys. Res., 96, 32893305, https://doi.org/10.1029/90JC00985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cresswell, G., A. Frische, J. Peterson, and D. Quadfasel, 1993: Circulation in the Timor Sea. J. Geophys. Res., 98, 14 37914 389, https://doi.org/10.1029/93JC00317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • du Penhoat, Y., and M. A. Cane, 1991: Effect of low-latitude western boundary gaps on the reflection of equatorial motions. J. Geophys. Res., 96, 33073322, https://doi.org/10.1029/90JC01798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 2005: Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18 (4), 1427, https://doi.org/10.5670/oceanog.2005.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328, https://doi.org/10.1029/1999GL002340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, https://doi.org/10.1029/2008GL036372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Coauthors, 2010: The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, D., and Coauthors, 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308, https://doi.org/10.1038/nature14504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., A. Ishida, and S. Hosoda, 2011: Observed ocean variability in the Mindanao Dome region. J. Phys. Oceanogr., 41, 287302, https://doi.org/10.1175/2010JPO4329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuehl, J., and V. A. Sheremet, 2009: Identification of a cusp catastrophe in a gap-leaping western boundary current. J. Mar. Res., 67, 2542, https://doi.org/10.1357/002224009788597908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luick, J. L., and G. R. Cresswell, 2001: Current measurements in the Maluku Sea. J. Geophys. Res., 106, 13 95313 958, https://doi.org/10.1029/2000JC000694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, J. C. Swallow, A. G. Ilahude, and J. Banjarnahor, 1994: Low frequency variability of the currents in Indonesian channels (Savu-Roti and Roti-Ashmore Reef). Deep-Sea Res. I, 41, 16431661, https://doi.org/10.1016/0967-0637(94)90066-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and A. G. Ilahude, 1996: The Indo-Pacific throughflow in the Timor Passage. J. Geophys. Res., 101, 12 41112 420, https://doi.org/10.1029/95JC03565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and F. Syamsudin, 2001: The throughflow within Ombai Strait. Deep-Sea Res. I, 48, 12371253, https://doi.org/10.1016/S0967-0637(00)00084-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, S. P., and D. Arief, 1988: Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature, 333, 444447, https://doi.org/10.1038/333444a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheremet, V. A., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 12471259, https://doi.org/10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2005: Reflection and transmission of equatorial Rossby waves. J. Phys. Oceanogr., 35, 363373, https://doi.org/10.1175/JPO-2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and Coauthors, 2004: INSTANT: A new international array to measure the Indonesian Throughflow. Eos, Trans. Amer. Geophys. Union, 85, 369376, https://doi.org/10.1029/2004EO390002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., and A. L. Gordon, 2005: Velocity and transport of the Makassar Strait throughflow. J. Geophys. Res., 110, C01005, https://doi.org/10.1029/2004JC002425.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O., 1983: Low-pass filters to suppress inertial and tidal frequencies. J. Phys. Oceanogr., 13, 10771083, https://doi.org/10.1175/1520-0485(1983)013<1077:LPFTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., H. Haak, E. Hertwig, and I. Fast, 2016: Vertical heat and salt fluxes due to resolved and parameterized meso-scale eddies. Ocean Modell., 108, 119, https://doi.org/10.1016/j.ocemod.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2012: Nonlinear dynamics of two western boundary currents colliding at a gap. J. Phys. Oceanogr., 42, 20302040, https://doi.org/10.1175/JPO-D-12-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2014: Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J. Phys. Oceanogr., 44, 18731885, https://doi.org/10.1175/JPO-D-13-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., D. Yuan, and Y. Hou, 2010: Effects of meridional winds on gap-leaping western boundary current. Chin. J. Oceanol. Limnol., 28, 354358, https://doi.org/10.1007/s00343-010-9281-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2005: Role of the Kelvin and Rossby waves in the seasonal cycle of the equatorial Pacific Ocean circulation. J. Geophys. Res., 110, C04004, https://doi.org/10.1029/2004JC002344.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and W. Han, 2006: Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 930944, https://doi.org/10.1175/JPO2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and R. Li, 2008: Dynamics of eddy-induced Kuroshio variability in Luzon Strait (in Chinese with English abstract). J. Trop. Oceanogr., 27, 19.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Z. Wang, 2011: Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. J. Phys. Oceanogr., 41, 878888, https://doi.org/10.1175/2010JPO4489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., M. M. Rienecker, and P. S. Schopf, 2004: Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. J. Geophys. Res., 109, C05019, https://doi.org/10.1029/2003JC001936.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Coauthors, 2011: Forcing of Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow. J. Climate, 24, 35933608, https://doi.org/10.1175/2011JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 15
PDF Downloads 46 46 15

Observed Transport Variations in the Maluku Channel of the Indonesian Seas Associated with Western Boundary Current Changes

View More View Less
  • 1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, and Qingdao National Laboratory for Marine Science and Technology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, and University of Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, and Qingdao National Laboratory for Marine Science and Technology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • 3 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, and Qingdao National Laboratory for Marine Science and Technology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, and University of Chinese Academy of Sciences, Beijing, China
  • 4 Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
  • 5 Max-Planck Institute für Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongliang Yuan, dyuan@qdio.ac.cn

Abstract

The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongliang Yuan, dyuan@qdio.ac.cn
Save