• Babanin, A. V., and B. K. Haus, 2009: On the existence of water turbulence induced by nonbreaking surface waves. J. Phys. Oceanogr., 39, 26752679, https://doi.org/10.1175/2009JPO4202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, A., I. Ginis, T. Hara, and E. Ulhorn, 2017: Impact of Langmuir turbulence on upper ocean response to Hurricane Edouard: Model and observations. J. Geophys. Res. Oceans, 122, 97129724, https://doi.org/10.1002/2017JC012956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carniel, S., J. C. Warner, J. Chiggiato, and M. Sclavo, 2009: Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind event. Ocean Modell., 30, 225239, https://doi.org/10.1016/j.ocemod.2009.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125, 31903209, https://doi.org/10.1175/1520-0493(1997)125<3190:MOTCWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, https://doi.org/10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 2015: Ekman spiral in horizontally inhomogeneous ocean with varying eddy viscosity. Pure Appl. Geophys., 172, 28312857, https://doi.org/10.1007/s00024-015-1063-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., and K. F. Cheng, 2008: South China Sea wave characteristics during Typhoon Muifa passage in winter 2004. J. Oceanogr., 64, 121, https://doi.org/10.1007/s10872-008-0001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., J. M. Veneziano, and C. Fan, 2000: Response of the South China Sea to Tropical Cyclone Ernie 1996. J. Geophys. Res., 105, 13 99114 009, https://doi.org/10.1029/2000JC900035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulation. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2011: Modeling hurricane waves and storm surge using integrally coupled scalable computations. Coastal Eng., 58, 4565, https://doi.org/10.1016/j.coastaleng.2010.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, https://doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 2004: A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modell., 6, 379403, https://doi.org/10.1016/S1463-5003(03)00026-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the north-west European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Han, G. J., and Coauthors, 2011: A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv. Atmos. Sci., 28, 682690, https://doi.org/10.1007/s00376-010-9184-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, https://doi.org/10.1175/JPO-D-14-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2017: Estimates of surface wind stress and drag coefficients in Typhoon Megi. J. Phys. Oceanogr., 47, 545563, https://doi.org/10.1175/JPO-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. J., and F. Qiao, 2010: Wave-turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res., 115, C04026, https://doi.org/10.1029/2009JC005853.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., 1979: On surface drift currents in the ocean. J. Fluid Mech., 91, 191208, https://doi.org/10.1017/S0022112079000112.

  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008: Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. J. Geophys. Res., 113, C03009, https://doi.org/10.1029/2007JB005482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 2003: On an improved model for the turbulent PBL. J. Atmos. Sci., 60, 22392246, https://doi.org/10.1175/1520-0469(2003)060<2239:OAIMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124, https://doi.org/10.1016/S1463-5003(02)00062-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., P. Wittmann, M. Sclavo, and C. A. Clayson, 2009: A preliminary estimate of the Stokes dissipation of wave energy in the global ocean. Geophys. Res. Lett., 36, L02605, https://doi.org/10.1029/2008GL036193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., U. Lass, and H. Prandke, 2010: A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: Observations in the Baltic Sea. Ocean Dyn., 60, 171180, https://doi.org/10.1007/s10236-009-0257-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A. B., and Coauthors, 2011: Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett., 38, L08608, https://doi.org/10.1029/2011GL047090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., M. A. Donelan, J. L. Lumley, and E. A. Terray, 1983: Wave turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 19881999, https://doi.org/10.1175/1520-0485(1983)013<1988:WTIITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in a coastal ocean. J. Geophys. Res., 11, C12007, https://doi.org/10.1029/2012JC008340.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling ratio on Langmuir circulation. J. Mar. Res., 51, 737769, https://doi.org/10.1357/0022240933223945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., M. Ming, P. G. Gregory, and J. B. Song, 2013: Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. J. Geophys. Res. Oceans, 118, 57135187, https://doi.org/10.1002/jgrc.20387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Y. Xie, Z. He, G. Han, K. Liu, J. Ma, and D. Li, 2008: Application of the multigrid data assimilation scheme to the China Seas’ temperature forecast. J. Atmos. Oceanic Technol., 25, 21062116, https://doi.org/10.1175/2008JTECHO510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., S. Peng, J. Wang, and J. Yan, 2014: Impacts of nonbreaking wave-stirring-induced mixing on the upper ocean thermal structure and typhoon intensity in the South China Sea. J. Geophys. Res. Oceans, 119, 50525070, https://doi.org/10.1002/2014JC009956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464490, https://doi.org/10.1017/jfm.2013.348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure models for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and A. F. Blumberg, 2004: Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 34, 693698, https://doi.org/10.1175/2517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B. C., A. L. M. Grant, J. A. Polton, and S. E. Belcher, 2015: Langmuir turbulence and surface heating in the ocean surface boundary layer. J. Phys. Oceanogr., 45, 28972911, https://doi.org/10.1175/JPO-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma, 2004: Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett., 31, L11303, https://doi.org/10.1029/2004GL019824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D’Asaro, R. R. Harcourt, and P. P. Sullivan, 2015: Langmuir turbulence under Hurricane Gustav (2008). J. Phys. Oceanogr., 45, 657677, https://doi.org/10.1175/JPO-D-14-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016a: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, I. Ginis, B. Thomas, T. Kukulka, and D. Wang, 2016b: Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone. Mon. Wea. Rev., 144, 45694590, https://doi.org/10.1175/MWR-D-16-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analysis for sea surface temperature. J. Climate, 20, 54735469, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, N., A. E. Tejada-Martinez, C. Akan, and C. E. Grosch, 2015: Toward a K-profile parameterization of Langmuir turbulence in shallow coastal shelves. J. Phys. Oceanogr., 45, 28692895, https://doi.org/10.1175/JPO-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. Donelan, B. K. Haus, and I. Ginis, 2014: The air–sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, https://doi.org/10.1038/srep05306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoney, L., K. Walsh, A. V. Babanin, M. Ghantous, P. Govekar, and I. Young, 2017: Simulated ocean response to tropical cyclones: The effect of a novel parameterization of mixing from unbroken surface waves. J. Adv. Model. Earth Syst., 9, 759780, https://doi.org/10.1002/2016MS000878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, H., Y. Miyazawa, and L.-Y. Oey, 2012: The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res., 117, C08021, https://doi.org/10.1029/2012JC008113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. Agarwal, W. M. Drennan, K. Kahma, A. J. Williams, P. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1984: The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking wind waves. J. Fluid Mech., 142, 151170, https://doi.org/10.1017/S0022112084001038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, 97049706, https://doi.org/10.1029/JC087iC12p09704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., X. Zhang, P. C. Chu, C. Guan, H. Fu, G. Chao, G. Han, and W. Li, 2017: Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002). J. Geophys. Res. Oceans, 122, 77837802, https://doi.org/10.1002/2016JC012592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. F., G. J. Han, D. X. Wang, W. Li, and Z. J. He, 2011: Effect of surface wave breaking on the surface boundary layer of temperature in the Yellow Sea in summer. Ocean Modell., 38, 267279, https://doi.org/10.1016/j.ocemod.2011.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. F., G. J. Han, D. X. Wang, Z. A. Deng, and W. Li, 2012: Summer surface layer thermal response to surface gravity waves in the Yellow Sea. Ocean Dyn., 62, 9831000, https://doi.org/10.1007/s10236-012-0547-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. F., G. J. Han, X. D. Wang, and L. X. Zhang, 2014: Effects of Stokes production on summer ocean shelf dynamics. Acta Oceanol. Sin., 33, 2434, https://doi.org/10.1007/s13131-014-0424-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. F., G. J. Han, D. Li, X. R. Wu, W. Li, and P. C. Chu, 2015: Variational estimation of wave-affected parameters in a two-equation turbulence model. J. Atmos. Oceanic Technol., 32, 528546, https://doi.org/10.1175/JTECH-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. S., Z. F. Wang, B. Wang, K. J. Wu, G. J. Han, and W. Li, 2014: A numerical estimation of the impact of Stokes drift on upper ocean temperature. Acta Oceanol. Sin., 33, 4855, https://doi.org/10.1007/s13131-014-0507-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zijlema, M., G. P. V. Vledder, and L. H. Holthuijsen, 2012: Bottom friction and wind drag for wave models. Coastal Eng., 65, 1926, https://doi.org/10.1016/j.coastaleng.2012.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 12
PDF Downloads 33 33 11

Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005)

View More View Less
  • 1 School of Marine Science and Technology, Tianjin University, Tianjin, China
  • 2 Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, California
  • 3 College of Automation, Harbin Engineering University, Harbin, China
  • 4 Key Laboratory of Marine Environmental Information Technology, National Marine Data and Information Service, State Oceanic Administration, Tianjin, China
  • 5 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
© Get Permissions
Restricted access

Abstract

Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuefeng Zhang, zhangxf@mail.nmdis.gov.cn

Abstract

Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuefeng Zhang, zhangxf@mail.nmdis.gov.cn
Save