• Baer, F., and J. J. Tribbia, 1977: On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev., 105, 15361539, https://doi.org/10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1972: Geostrophic adjustment. Rev. Geophys., 10, 485528, https://doi.org/10.1029/RG010i002p00485.

  • Borchert, S., U. Achatz, and M. D. Fruman, 2014: Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. J. Fluid Mech., 758, 287311, https://doi.org/10.1017/jfm.2014.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2014: Evaluating different parameterizations for mixed layer eddy fluxes induced by baroclinic instability. J. Phys. Oceanogr., 44, 25242546, https://doi.org/10.1175/JPO-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, https://doi.org/10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2014: Waves and Mean Flows. Cambridge University Press, 370 pp.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, P. Klein, and H. Sasaki, 2012: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech., 699, 153173, https://doi.org/10.1017/jfm.2012.90.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and A. M. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, https://doi.org/10.1016/j.ocemod.2009.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and A. Viúdez, 2003: A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech., 488, 123150, https://doi.org/10.1017/S0022112003004920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eden, C., 2016: Closing the energy cycle in an ocean model. Ocean Modell., 101, 3042, https://doi.org/10.1016/j.ocemod.2016.02.005.

  • Eden, C., and D. Olbers, 2017: A closure for internal wave–mean flow interaction. Part II: Wave drag. J. Phys. Oceanogr., 47, 14031412, https://doi.org/10.1175/JPO-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, https://doi.org/10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gertz, A., and D. N. Straub, 2009: Near-inertial oscillations and the damping of midlatitude gyres: A modeling study. J. Phys. Oceanogr., 39, 23382350, https://doi.org/10.1175/2009JPO4058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke, and U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech., 838, 541, https://doi.org/10.1017/jfm.2017.883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2016: Balance dynamics in rotating stratified turbulence. J. Fluid Mech., 795, 914949, https://doi.org/10.1017/jfm.2016.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2017: Rotating stratified turbulence and the slow manifold. Comput. Fluids, 151, 2334, https://doi.org/10.1016/j.compfluid.2016.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, https://doi.org/10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1980: Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci., 37, 16851699, https://doi.org/10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 15471558, https://doi.org/10.1175/1520-0469(1986)043<1547:OTEOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1992: The slow manifold—What is it? J. Atmos. Sci., 49, 24492451, https://doi.org/10.1175/1520-0469(1992)049<2449:TSMII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and V. Krishnamurthy, 1987: On the nonexistence of a slow manifold. J. Atmos. Sci., 44, 29402950, https://doi.org/10.1175/1520-0469(1987)044<2940:OTNOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model, with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253271.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and W. A. Norton, 2000: Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 12141235, https://doi.org/10.1175/1520-0469(2000)057<1214:PVIOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, https://doi.org/10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of near-inertial waves by the Kuroshio Front. J. Phys. Oceanogr., 45, 23812406, https://doi.org/10.1175/JPO-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., D. J. Muraki, and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62, 15451559, https://doi.org/10.1175/JAS3426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and M. J. Alexander, 2015: Case studies of nonorographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. Oceans, 120, 12781299, https://doi.org/10.1002/2014JD022332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollmann, F., C. Eden, and D. Olbers, 2017: Evaluating the global internal wave model IDEMIX using finestructure methods. J. Phys. Oceanogr., 47, 22672289, https://doi.org/10.1175/JPO-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res., 1, 239263, https://doi.org/10.1357/002224038806440520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., and S. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, https://doi.org/10.1002/qj.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., J. Duncombe, and R. M. Samelson, 2017: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part II: Forced simulations. J. Phys. Oceanogr., 47, 24292454, https://doi.org/10.1175/JPO-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., and R. Plougonven, 2016: Generation and backreaction of spontaneously emitted inertia-gravity waves. Geophys. Res. Lett., 43, 35193525, https://doi.org/10.1002/2016GL068219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theiss, J., and A. R. Mohebalhojeh, 2009: The equatorial counterpart of the quasi-geostrophic model. J. Fluid Mech., 637, 327356, https://doi.org/10.1017/S0022112009008052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, https://doi.org/10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., 2008: The stationary frontal wave packet spontaneously generated in mesoscale dipoles. J. Phys. Oceanogr., 38, 243256, https://doi.org/10.1175/2006JPO3692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warn, T., 1997: Nonlinear balance and quasi-geostrophic sets. Atmos.–Ocean, 35, 135145, https://doi.org/10.1080/07055900.1997.9649588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. Haine, and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 35433556, https://doi.org/10.1175/2008JAS2480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and S. D. Eckermann, 2008: Global gravity wave variances from Aura MLS: Characteristics and interpretation. J. Atmos. Sci., 65, 36953718, https://doi.org/10.1175/2008JAS2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, Y., K. Sato, and N. Sugimoto, 2015a: A theoretical study on the spontaneous radiation of inertia–gravity waves using the renormalization group method. Part I: Derivation of the renormalization group equations. J. Atmos. Sci., 72, 957983, https://doi.org/10.1175/JAS-D-13-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, Y., K. Sato, and N. Sugimoto, 2015b: A theoretical study on the spontaneous radiation of inertia–gravity waves using the renormalization group method. Part II: Verification of the theoretical equations by numerical simulation. J. Atmos. Sci., 72, 9841009, https://doi.org/10.1175/JAS-D-13-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 2008: Decoupling of balanced and unbalanced motions and inertia–gravity wave emission: Small versus large Rossby numbers. J. Atmos. Sci., 65, 35283542, https://doi.org/10.1175/2008JAS2481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 34
PDF Downloads 115 115 50

Internal Gravity Wave Emission in Different Dynamical Regimes

View More View Less
  • 1 IMPRS-ESM, MPI für Meteorologie, and Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
  • 2 Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

We aim to diagnose internal gravity waves emitted from balanced flow and investigate their role in the downscale transfer of energy. We use an idealized numerical model to simulate a range of baroclinically unstable flows to mimic dynamical regimes ranging from ageostrophic to quasigeostrophic flows. Wavelike signals present in the simulated flows, seen for instance in the vertical velocity, can be related to gravity wave activity identified by frequency and frequency–wavenumber spectra. To explicitly assign the energy contributions to the balanced and unbalanced (gravity) modes, we perform linear and nonlinear modal decomposition to decompose the full state variable into its balanced and unbalanced counterparts. The linear decomposition shows a reasonable separation of the slow and fast modes but is no longer valid when applied to a nonlinear system. To account for the nonlinearity in our system, we apply the normal mode initialization technique proposed by Machenhauer in 1977. Further, we assess the strength of the gravity wave activity and dissipation related to the decomposed modes for different dynamical regimes. We find that gravity wave emission becomes increasingly stronger going from quasigeostrophic to ageostrophic regime. The kinetic energy tied to the unbalanced mode scales close to Ro2 (or Ri−1), with Ro and Ri being the Rossby and Richardson numbers, respectively. Furthermore, internal gravity waves dissipate predominantly through small-scale dissipation, which emphasizes their role in the downscale energy transfer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manita Chouksey, manita.chouksey@uni-hamburg.de

Abstract

We aim to diagnose internal gravity waves emitted from balanced flow and investigate their role in the downscale transfer of energy. We use an idealized numerical model to simulate a range of baroclinically unstable flows to mimic dynamical regimes ranging from ageostrophic to quasigeostrophic flows. Wavelike signals present in the simulated flows, seen for instance in the vertical velocity, can be related to gravity wave activity identified by frequency and frequency–wavenumber spectra. To explicitly assign the energy contributions to the balanced and unbalanced (gravity) modes, we perform linear and nonlinear modal decomposition to decompose the full state variable into its balanced and unbalanced counterparts. The linear decomposition shows a reasonable separation of the slow and fast modes but is no longer valid when applied to a nonlinear system. To account for the nonlinearity in our system, we apply the normal mode initialization technique proposed by Machenhauer in 1977. Further, we assess the strength of the gravity wave activity and dissipation related to the decomposed modes for different dynamical regimes. We find that gravity wave emission becomes increasingly stronger going from quasigeostrophic to ageostrophic regime. The kinetic energy tied to the unbalanced mode scales close to Ro2 (or Ri−1), with Ro and Ri being the Rossby and Richardson numbers, respectively. Furthermore, internal gravity waves dissipate predominantly through small-scale dissipation, which emphasizes their role in the downscale energy transfer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manita Chouksey, manita.chouksey@uni-hamburg.de
Save