• Accot, R., D. Didier, D. Dumont, J. Robitaille, and S. Bélanger, 2014: Ice canoe as a research platform in coastal ocean. Canadian Meteorological and Oceanographic Society, https://doi.org/10.13140/RG.2.2.31664.66563.

    • Crossref
    • Export Citation
  • Andreas, E. L., 2011: A relationship between the aerodynamic and physical roughness of winter sea ice. Quart. J. Roy. Meteor. Soc., 137, 15811588, https://doi.org/10.1002/qj.842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banke, E. G., and S. D. Smith, 1973: Wind stress on Arctic sea ice. J. Geophys. Res., 78, 78717883, https://doi.org/10.1029/JC078i033p07871.

  • Christensen, K. H., and E. Terrile, 2009: Drift and deformation of oil slicks due to surface waves. J. Fluid Mech., 620, 313332, https://doi.org/10.1017/S0022112008004606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, M., H. H. Shen, M. A. Hopkins, and S. F. Ackley, 2004: Wave rafting and the equilibrium pancake ice cover thickness. J. Geophys. Res., 109, C07023, https://doi.org/10.1029/2003JC002192.

    • Search Google Scholar
    • Export Citation
  • Didier, D., S. Tolszczuk-Leclerc, S. Bélanger, and D. Dumont, 2014: Impact of a winter storm on coastal ice as observed by RADARSAT-2. Canadian Meteorological and Oceanographic Society, https://doi.org/10.13140/RG.2.2.14887.44965.

    • Crossref
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102, 15 78115 796, https://doi.org/10.1029/97JC00467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C., and T. G. Haskell, 2001: Ocean wave speed in the Antarctic marginal ice zone. Ann. Glaciol., 33, 350354, https://doi.org/10.3189/172756401781818941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, P., and Coauthors, 2017: Physical oceanographic conditions in the Gulf of St. Lawrence in 2016. Fisheries and Oceans Canada Research Doc. 2017/044, 96 pp., http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2017/2017_044-eng.html.

    • Crossref
    • Export Citation
  • Herbers, T. H. C., P. F. Jessen, T. T. Janssen, D. B. Colbert, and J. H. MacMahan, 2012: Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Oceanic Technol., 29, 944959, https://doi.org/10.1175/JTECH-D-11-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, M. A., and J. Tuhkuri, 1999: Compression of floating ice fields. J. Geophys. Res., 104, 15 81515 825, https://doi.org/10.1029/1999JC900127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., and H. Mitsudera, 2008: A numerical study of ice-drift divergence by cyclonic wind with a Lagrangian ice model. Tellus, 60A, 789802, https://doi.org/10.1111/j.1600-0870.2008.00321.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohout, A. L., M. J. M. Williams, S. M. Dean, and M. H. Meylan, 2014: Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509, 604607, https://doi.org/10.1038/nature13262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1945: Hydrodynamics. 6th ed. Dover Publications, 768 pp.

  • Lavoie, R., and R. Genest, 2012: Naviguer en Canot à Glace, un Patrimoine Immatériel. Les Editions GID, 240 pp.

  • Lemieux, J.-F., and B. Tremblay, 2009: Numerical convergence of viscous-plastic sea ice models. J. Geophys. Res. Oceans, 114, C05009, https://doi.org/10.1029/2008JC005017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, A. K., and E. Mollo-Christensen, 1988: Wave propagation in a solid ice pack. J. Phys. Oceanogr., 18, 17021712, https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1977: The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machines. Proc. Roy. Soc. London, 352A, 463480, https://doi.org/10.1098/rspa.1977.0011.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1960: Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech., 8, 565583, https://doi.org/10.1017/S0022112060000803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stress in water waves; a physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562, https://www.sciencedirect.com/science/article/pii/0011747164900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of a floating buoy. Proc. Conf. Ocean Wave Spectra, Easton, MD, U.S. Naval Oceanographic Office, 111–132.

  • Martin, S., and P. Kauffman, 1981: A field and laboratory study of wave damping by grease ice. J. Glaciol., 27, 283313, https://doi.org/10.1017/S0022143000015392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1978: A simulation of inertial oscillation in drifting pack ice. Dyn. Atmos. Oceans, 2, 107122, https://doi.org/10.1016/0377-0265(78)90005-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, M., 1980: Ship resistance in thick brash ice. Cold Reg. Sci. Technol., 3, 305321, https://doi.org/10.1016/0165-232X(80)90037-3.

  • Perrie, W., and Y. Hu, 1996: Air–ice–ocean momentum exchange. Part I: Energy transfer between waves and ice floes. J. Phys. Oceanogr., 26, 17051720, https://doi.org/10.1175/1520-0485(1996)026<1705:AMEPTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrie, W., and Y. Hu, 1997: Air–ice–ocean momentum exchange. Part II: Ice drift. J. Phys. Oceanogr., 27, 19761996, https://doi.org/10.1175/1520-0485(1997)027<1976:AIOMEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podolskiy, E. A., G. Chambon, M. Naaim, and J. Gaume, 2015: Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments. Nat. Hazards Earth Syst. Sci., 15, 119134, https://doi.org/10.5194/nhess-15-119-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saucier, F. J., F. Roy, D. Gilbert, P. Pellerin, and H. Ritchie, 2003: Modeling the formation and circulation processes of water masses and sea ice in the gulf of St. Lawrence, Canada. J. Geophys. Res. Oceans, 108, 3269, https://doi.org/10.1029/2000JC000686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, V. A., J. P. Dugan, P. Wadhams, P. J. Rottier, and A. K. Liu, 1995: Of ocean waves and sea ice. Annu. Rev. Fluid Mech., 27, 115168, https://doi.org/10.1146/annurev.fl.27.010195.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., P. Sutherland, and F. Ardhuin, 2018: Strong and highly variable push of ocean waves on Southern Ocean sea ice. Proc. Natl. Acad. Sci. USA, 115, 58615865, https://doi.org/10.1073/pnas.1802011115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the search sea ice outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, https://doi.org/10.1002/2014GL059388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and J.-C. Gascard, 2016: Airborne remote sensing of ocean wave directional wavenumber spectra in the marginal ice zone. Geophys. Res. Lett., 43, 51515159, https://doi.org/10.1002/2016GL067713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, G., and J. Rabault, 2016: Observations of wave dispersion and attenuation in landfast ice. J. Geophys. Res. Oceans, 121, 19841997, https://doi.org/10.1002/2015JC011446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., and W. E. Rogers, 2014: Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett., 41, 31363140, https://doi.org/10.1002/2014GL059983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uzuner, M. S., and J. F. Kennedy, 1976: Theoretical model of river ice jams. J. Hydraul. Div., 102, 13651383.

  • Wadhams, P., 1983: A mechanism for the formation of ice edge bands. J. Geophys. Res., 88, 28132818, https://doi.org/10.1029/JC088iC05p02813.

  • Wadhams, P., V. A. Squire, D. J. Goodman, A. M. Cowan, and S. C. Moore, 1988: The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res., 93, 67996818, https://doi.org/10.1029/JC093iC06p06799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, T. D., P. Rampal, and S. Bouillon, 2017: Wave–ice interactions in the neXtSIM sea-ice model. Cryosphere, 11, 21172135, https://doi.org/10.5194/tc-11-2117-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 16
PDF Downloads 43 43 15

Marginal Ice Zone Thickness and Extent due to Wave Radiation Stress

View More View Less
  • 1 IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • 2 Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Ocean surface wave radiation stress represents the flux of momentum due to the waves. When waves are dissipated or reflected by sea ice, that momentum is absorbed or reflected, resulting in a horizontal forcing that frequently compresses the ice. In this work, wave radiation stress is used to estimate the compressive force applied by waves to the marginal ice zone (MIZ). It is balanced by an ice internal compressive stress based on Mohr–Coulomb granular materials theory. The ice internal stress can be related to ice thickness, allowing this force balance to be used as a model for the estimation of MIZ ice thickness. The model was validated and tested using data collected during two field campaigns in the St. Lawrence estuary in 2016 and 2017. Modeled ice thickness was found to be consistent with the mean measured ice thickness over the conditions available. The range of validity of the model is discussed, and a definition of MIZ extent, based on the relative strength of wind and wave forcing, is proposed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter Sutherland, peter.sutherland@ifremer.fr

Abstract

Ocean surface wave radiation stress represents the flux of momentum due to the waves. When waves are dissipated or reflected by sea ice, that momentum is absorbed or reflected, resulting in a horizontal forcing that frequently compresses the ice. In this work, wave radiation stress is used to estimate the compressive force applied by waves to the marginal ice zone (MIZ). It is balanced by an ice internal compressive stress based on Mohr–Coulomb granular materials theory. The ice internal stress can be related to ice thickness, allowing this force balance to be used as a model for the estimation of MIZ ice thickness. The model was validated and tested using data collected during two field campaigns in the St. Lawrence estuary in 2016 and 2017. Modeled ice thickness was found to be consistent with the mean measured ice thickness over the conditions available. The range of validity of the model is discussed, and a definition of MIZ extent, based on the relative strength of wind and wave forcing, is proposed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter Sutherland, peter.sutherland@ifremer.fr
Save