• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, https://doi.org/10.1175/2010JPO4388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., J. C. McWilliams, and C. R. Jackson, 2010: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, https://doi.org/10.1029/2009JC006004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, D. Luther, and K. W. Gurgel, 2010: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40, 11801200, https://doi.org/10.1175/2010JPO4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2011JD016244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, https://doi.org/10.1002/2013JC009293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D., Q. Li, and J. H. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and nonlinearity. Atmos.–Ocean, 47, 267280, https://doi.org/10.3137/OC313.2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C. J., 1970: The effect of weak shear and rotation on internal waves. Tellus, 22, 194204, https://doi.org/10.3402/tellusa.v22i2.10214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and R. H. J. Grimshaw, 2008: Nonlinear disintegration of the internal tide. J. Phys. Oceanogr., 38, 686701, https://doi.org/10.1175/2007JPO3826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., W. Zhao, J. Tian, and Q. Yang, 2014: Mooring observations of internal solitary waves in the deep basin west of Luzon Strait. Acta Oceanol. Sin., 33, 8289, https://doi.org/10.1007/s13131-014-0416-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Chen, W. Zhao, Z. Zhang, C. Zhou, Q. Yang, and J. Tian, 2016: An extreme internal solitary wave event observed in the northern South China Sea. Sci. Rep., 6, 30041, https://doi.org/10.1038/srep30041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Zhang, X. Zhang, H. Qian, W. Zhao, and J. Tian, 2017: Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J. Phys. Oceanogr., 47, 15391554, https://doi.org/10.1175/JPO-D-16-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, https://doi.org/10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2014: The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J. Phys. Oceanogr., 44, 13861405, https://doi.org/10.1175/JPO-D-13-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, C.-T. Liu, A. K. Liu, and L. David, 2006: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33, L11607, https://doi.org/10.1029/2006GL025932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M. P., and J. J. Riley, 1991: Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and D. M. Farmer, 2011: The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr., 41, 13451363, https://doi.org/10.1175/2011JPO4587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R. C., B. Ma, Y. H. Cheng, C. R. Ho, B. Qiu, C. M. Lee, and M. H. Chang, 2014: Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans, 119, 21292142, https://doi.org/10.1002/2013JC009548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, https://doi.org/10.1029/2007GL029749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. L. Shroyer, S. M. Kelly, and M. E. Inall, 2012: Are any coastal internal tides predictable? Oceanography, 25 (2), 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-H., and D. R. Watts, 2006: Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36, 2234, https://doi.org/10.1175/JPO2846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2015: Incoherent signature of internal tides on sea level in idealized numerical simulations. Geophys. Res. Lett., 42, 15201526, https://doi.org/10.1002/2014GL062583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., Y. J. Yang, and F. L. Bahr, 2010: Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes Geophys., 17, 481498, https://doi.org/10.5194/npg-17-481-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., H. Simmons, T. Y. Tang, and Y. Wang, 2011: Turbulent properties of internal waves in the South China Sea. Oceanography, 24 (4), 7887, https://doi.org/10.5670/oceanog.2011.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., L. Zhou, X. Zhang, X. Liang, Q. Zheng, and W. Zhao, 2003: Estimates of M2 internal tide energy fluxes along the margin of northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30, 1889, https://doi.org/10.1029/2003GL018008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, https://doi.org/10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., C.-F. Dai, and Y.-Y. Chen, 2007: Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Lett., 34, L18609, https://doi.org/10.1029/2007GL030658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., and T.-L. Chiang, 2007: Mesoscale eddies in the northern South China Sea. Deep-Sea Res. II, 54, 15751588, https://doi.org/10.1016/j.dsr2.2007.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, https://doi.org/10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, J. Tian, and X. Liang, 2013: A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Oceans, 118, 64796494, https://doi.org/10.1002/2013JC008994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, B. Qiu, and J. Tian, 2017: Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr., 47, 12431259, https://doi.org/10.1175/JPO-D-16-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., C. Zhou, J. Tian, Q. Yang, B. Wang, L. Xie, and T. Qu, 2014: Deep water circulation in the Luzon Strait. J. Geophys. Res. Oceans, 119, 790804, https://doi.org/10.1002/2013JC009587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, https://doi.org/10.1002/2014JC010014.

  • Zhao, Z., V. Klemas, Q. Zheng, and X. H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L22602, https://doi.org/10.1029/2004GL021061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, R.-C. Lien, M. C. Gregg, and G. S. Carter, 2012: Internal tides and mixing in a submarine canyon with time-varying stratification. J. Phys. Oceanogr., 42, 21212142, https://doi.org/10.1175/JPO-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., R. D. Susanto, C.-R. Ho, Y. T. Song, and Q. Xu, 2007: Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J. Geophys. Res., 112, C03021, https://doi.org/10.1029/2006JC003551.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 19
PDF Downloads 48 48 13

Role of Mesoscale Eddies in Modulating the Semidiurnal Internal Tide: Observation Results in the Northern South China Sea

View More View Less
  • 1 Physical Oceanography Laboratory, and Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
© Get Permissions
Restricted access

Abstract

The role of mesoscale eddies in modulating the semidiurnal internal tide (SIT) in the northern South China Sea (SCS) is examined using the data from a cross-shaped mooring array. From November 2013 to January 2014, an anticyclonic eddy (AE) and cyclonic eddy (CE) pair crossed the westward SIT beam originating in Luzon Strait. Observations showed that, because of the current and stratification modulations by the eddy pair, the propagation speed of the mode-1 SIT sped up (slowed down) by up to 0.7 m s−1 (0.4 m s−1) within the AE’s (CE’s) southern portion. As a result of the spatially varying phase speed, the mode-1 SIT wave crest was clockwise rotated (counterclockwise rotated) within the AE (CE) core, while it exhibited convex and concave (concave and convex) patterns on the southern and northern peripheries of the AE (CE), respectively. In mid-to-late November, most of the mode-1 SIT energy was refracted by the AE away from Dongsha Island toward the north part of the northern SCS, which resulted in enhanced internal solitary waves (ISWs) there. Corresponding to the energy refraction, responses of the depth-integrated mode-1 SIT energy to the eddies were generally in phase at the along-beam-direction moorings but out of phase in the south and north parts of the northern SCS at the cross-beam-direction moorings. From late December to early January, intensified mode-2 SIT was observed, whose energy was likely transferred from the mode-1 SIT through eddy–wave interactions. The observation results reported here are helpful to improve the capability to predict internal tides and ISWs in the northern SCS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0209.s1.

Corresponding author: Wei Zhao, weizhao@ouc.edu.cn

Abstract

The role of mesoscale eddies in modulating the semidiurnal internal tide (SIT) in the northern South China Sea (SCS) is examined using the data from a cross-shaped mooring array. From November 2013 to January 2014, an anticyclonic eddy (AE) and cyclonic eddy (CE) pair crossed the westward SIT beam originating in Luzon Strait. Observations showed that, because of the current and stratification modulations by the eddy pair, the propagation speed of the mode-1 SIT sped up (slowed down) by up to 0.7 m s−1 (0.4 m s−1) within the AE’s (CE’s) southern portion. As a result of the spatially varying phase speed, the mode-1 SIT wave crest was clockwise rotated (counterclockwise rotated) within the AE (CE) core, while it exhibited convex and concave (concave and convex) patterns on the southern and northern peripheries of the AE (CE), respectively. In mid-to-late November, most of the mode-1 SIT energy was refracted by the AE away from Dongsha Island toward the north part of the northern SCS, which resulted in enhanced internal solitary waves (ISWs) there. Corresponding to the energy refraction, responses of the depth-integrated mode-1 SIT energy to the eddies were generally in phase at the along-beam-direction moorings but out of phase in the south and north parts of the northern SCS at the cross-beam-direction moorings. From late December to early January, intensified mode-2 SIT was observed, whose energy was likely transferred from the mode-1 SIT through eddy–wave interactions. The observation results reported here are helpful to improve the capability to predict internal tides and ISWs in the northern SCS.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-17-0209.s1.

Corresponding author: Wei Zhao, weizhao@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 460.83 KB)
Save