• Adcroft, A., and R. Hallberg, 2006: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell., 11, 224233, https://doi.org/10.1016/j.ocemod.2004.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Bleck, R., 1978: Finite difference equations in generalized vertical coordinates. Part 1: Total energy conservation. Beitr. Phys. Atmos., 51, 360372.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1985: On the conversion between mean and eddy components of potential and kinetic energy in isentropic and isopycnic coordinates. Dyn. Atmos. Oceans, 9, 1737, https://doi.org/10.1016/0377-0265(85)90014-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and D. B. Boudra, 1981: Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755770, https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and D. B. Boudra, 1986: Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res., 91, 76117621, https://doi.org/10.1029/JC091iC06p07611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, R. Bleck, and F. O. Bryan, 1996: A model comparison: Numerical simulations of the North and equatorial Atlantic oceanic circulation in depth and isopycnic coordinates. J. Phys. Oceanogr., 26, 18491867, https://doi.org/10.1175/1520-0485(1996)026<1849:AMCNSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J. M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. International Geophysics Series, Vol. 101, Academic Press, 828 pp.

    • Crossref
    • Export Citation
  • Dantzler, H. L., Jr., 1977: Potential energy maxima in the tropical and subtropical North Atlantic. J. Phys. Oceanogr., 7, 512519, https://doi.org/10.1175/1520-0485(1977)007<0512:PEMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, R., S. R. Springer, and D. M. Oxilia, 2000: Orthobaric density: A thermodynamic variable for ocean circulation studies. J. Phys. Oceanogr., 30, 28302852, https://doi.org/10.1175/1520-0485(2001)031<2830:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., M. I. Pujol, F. Briol, P. Y. Le Traon, G. Larnicol, N. Picot, F. Mertz, and M. Ablain, 2011: Jason-2 in DUACS: Updated system description, first tandem results and impact on processing and products. Mar. Geod., 34, 214241, https://doi.org/10.1080/01490419.2011.584826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1995: Some aspects of the circulation in ocean basins with isopycnals intersecting sloping boundaries. Ph.D. thesis, University of Washington, 244 pp.

  • Herbette, S., Y. Morel, and M. Arhan, 2003: Erosion of a surface vortex by a seamount. J. Phys. Oceanogr., 33, 16641679, https://doi.org/10.1175/2382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, https://doi.org/10.1017/S0022112081001742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, https://doi.org/10.1357/0022240053693770.

  • Hughes, G. O., A. M. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, https://doi.org/10.1175/2009JPO4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, https://doi.org/10.1175/2010JPO4497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2003: Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett., 30, 2045, https://doi.org/10.1029/2003GL017706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2008: On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J. Fluid Mech., 597, 415427, https://doi.org/10.1017/S0022112007009743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and G. Johnson, 2013: Global ocean surface velocities from drifters: Mean, variance, El Niño–Southern Oscillation response, and seasonal cycle. J. Geophys. Res. Oceans, 118, 29923006, https://doi.org/10.1002/jgrc.20210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. M. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., and S. N. Giddings, 2016: The mechanical energy budget of a regional ocean model. J. Phys. Oceanogr., 46, 27192733, https://doi.org/10.1175/JPO-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and D. R. Jackett, 2005: The material derivative of neutral density. J. Mar. Res., 63, 159185, https://doi.org/10.1357/0022240053693734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, R. B., 1937: A suggested method for representing gradient flow in isentropic surfaces. Bull. Amer. Meteor. Soc., 18, 210212.

  • Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth, 2007: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 19681988, https://doi.org/10.1175/JPO3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45A, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J. P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, https://doi.org/10.1175/JTECH-D-12-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384409, https://doi.org/10.1175/JPO-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., S. C. Ascher, S. Levitus, and J. Peixoto, 1989: New estimates of the available potential energy for the World Ocean. J. Geophys. Res., 94, 31873200, https://doi.org/10.1029/JC094iC03p03187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer, 520 pp.

  • Richardson, P., C. Maillard, and T. B. Stanford, 1979: The physical structure and life history of cyclonic Gulf Stream ring Allen. J. Geophys. Res., 84, 77277741, https://doi.org/10.1029/JC084iC12p07727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1991: General stability conditions for a multi-layer model. J. Fluid Mech., 222, 119137, https://doi.org/10.1017/S0022112091001027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., 2013: Dynamical potential energy: A new approach to ocean energetics. J. Phys. Oceanogr., 43, 457476, https://doi.org/10.1175/JPO-D-12-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roullet, G., and P. Klein, 2009: Available potential energy diagnosis in a direct numerical simulation of rotating stratified turbulence. J. Fluid Mech., 624, 4555, https://doi.org/10.1017/S0022112008004473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roullet, G., X. Capet, and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett., 41, 16511656, https://doi.org/10.1002/2013GL059004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., R. Tailleux, E. D. Butler, G. O. Hughes, and K. I. C. Oliver, 2015: Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 12421257, https://doi.org/10.1175/JPO-D-14-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. Beardsley, and B. Butman, 2006: On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay. J. Fluid Mech., 561, 103112, https://doi.org/10.1017/S0022112006000991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2010: Entropy versus APE production: On the buoyancy power input in the oceans energy cycle. Geophys. Res. Lett., 37, L22603, https://doi.org/10.1029/2010GL044962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy density for a multicomponent Boussinesq fluid with arbitrary nonlinear equation of state. J. Fluid Mech., 735, 499518, https://doi.org/10.1017/jfm.2013.509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2016: Generalized patched potential density and thermodynamic neutral density: Two new physically based quasi-neutral density variables for ocean water masses analyses and circulation studies. J. Phys. Oceanogr., 46, 35713584, https://doi.org/10.1175/JPO-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winther, N. G., Y. G. Morel, and G. Evensen, 2007: Efficiency of high order numerical schemes for momentum advection. J. Mar. Syst., 67, 3146, https://doi.org/10.1016/j.jmarsys.2006.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, https://doi.org/10.1175/JPO-D-14-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 19
PDF Downloads 55 55 19

Available Potential Energy in Density Coordinates

View More View Less
  • 1 Laboratoire d’Océanographie Physique et Spatiale, Université de Bretagne Occidentale, Brest, France
© Get Permissions
Restricted access

Abstract

The vertically integrated potential energy of an incompressible stratified fluid formulated in density coordinates can be simply written as a weighted vertical sum of the squares of the vertical displacements of density surfaces, a general expression valid for arbitrary displacements. The sum of this form of potential energy and kinetic energy is then a conserved quantity for the multilayer shallow water model. The formulation in density coordinates is a natural one to find the Lorenz reference state of available potential energy (APE). We describe the method to compute the APE of an ocean state and provide two applications. The first is the classical double-gyre, wind-driven circulation simulated by a shallow water model at high resolution. We show that the eddy kinetic and eddy potential energies are localized in regions of large gradients of mean APE. These large gradients surround an APE minimum found between the two gyres. The second is the time-mean World Ocean Circulation reconstructed from hydrography (World Ocean Atlas) and reference velocities at 1000 db from the Argo float program to obtain an absolute circulation. The total available potential energy exceeds the total mean kinetic energy of the World Ocean by three orders of magnitude, pointing out the very small Burger number of the circulation. The Gulf Stream, the Kuroshio, the Agulhas retroflection, and the confluence regions are four examples that confirm the shallow water model results that large gradients of mean available potential energy can be used as predictors for the presence of high eddy kinetic energy (obtained here from satellite altimetry).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Colin de Verdière, acolindv@univ-brest.fr

Abstract

The vertically integrated potential energy of an incompressible stratified fluid formulated in density coordinates can be simply written as a weighted vertical sum of the squares of the vertical displacements of density surfaces, a general expression valid for arbitrary displacements. The sum of this form of potential energy and kinetic energy is then a conserved quantity for the multilayer shallow water model. The formulation in density coordinates is a natural one to find the Lorenz reference state of available potential energy (APE). We describe the method to compute the APE of an ocean state and provide two applications. The first is the classical double-gyre, wind-driven circulation simulated by a shallow water model at high resolution. We show that the eddy kinetic and eddy potential energies are localized in regions of large gradients of mean APE. These large gradients surround an APE minimum found between the two gyres. The second is the time-mean World Ocean Circulation reconstructed from hydrography (World Ocean Atlas) and reference velocities at 1000 db from the Argo float program to obtain an absolute circulation. The total available potential energy exceeds the total mean kinetic energy of the World Ocean by three orders of magnitude, pointing out the very small Burger number of the circulation. The Gulf Stream, the Kuroshio, the Agulhas retroflection, and the confluence regions are four examples that confirm the shallow water model results that large gradients of mean available potential energy can be used as predictors for the presence of high eddy kinetic energy (obtained here from satellite altimetry).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Colin de Verdière, acolindv@univ-brest.fr
Save