• Anderson, S. P., 1993: Shear, strain and thermohaline vertical fine structure in the upper ocean. Ph.D. thesis, University of California, San Diego, Scripps Institution of Oceanography, 187 pp., http://www.dtic.mil/docs/citations/ADA265961/.

  • Arthur, R. S., S. K. Venayagamoorthy, J. R. Koseff, and O. B. Fringer, 2017: How we compute N matters to estimates of mixing in stratified flows. J. Fluid Mech., 831, R2, https://doi.org/10.1017/jfm.2017.679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumert, H., and H. Peters, 2004: Turbulence closure, steady state, and collapse into waves. J. Phys. Oceanogr., 34, 505512, https://doi.org/10.1175/1520-0485(2004)034<0505:TCSSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluteau, C. E., N. L. Jones, and G. N. Ivey, 2013: Turbulent mixing efficiency at an energetic ocean site. J. Geophys. Res. Oceans, 118, 46624672, https://doi.org/10.1002/jgrc.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluteau, C. E., R. G. Lueck, G. N. Ivey, N. L. Jones, J. W. Book, and A. E. Rice, 2017: Determining mixing rates from concurrent temperature and velocity measurements. J. Atmos. Oceanic Technol., 34, 22832293, https://doi.org/10.1175/JTECH-D-16-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogucki, D. J., H. Luo, and J. A. Domaradzki, 2012: Experimental evidence of the Kraichnan scalar spectrum at high Reynolds numbers. J. Phys. Oceanogr., 42, 17171728, https://doi.org/10.1175/JPO-D-11-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, D., and L. Boegman, 2013: A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans, 61–62, 1434, https://doi.org/10.1016/j.dynatmoce.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. A., and S. G. Monismith, 2011: The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr., 41, 22232241, https://doi.org/10.1175/2011JPO4344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. L. Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., E. Darelius, and K. B. Daae, 2016: Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett., 43, 760766, https://doi.org/10.1002/2015GL067349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: Stirring and mixing: What are the rate-controlling processes? From Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 1–8, http://www.soest.hawaii.edu/PubServices/2001pdfs/TOC2001.html.

  • Goodman, L., E. R. Levine, and R. G. Lueck, 2006: On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol., 23, 977990, https://doi.org/10.1175/JTECH1889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goto, Y., I. Yasuda, and M. Nagasawa, 2016: Turbulence estimation using fast-response thermistors attached to a free-fall vertical microstructure profiler. J. Atmos. Oceanic Technol., 33, 20652078, https://doi.org/10.1175/JTECH-D-15-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and J. K. Horne, 2009: Turbulence, acoustic backscatter, and pelagic nekton in Monterey Bay. J. Phys. Oceanogr., 39, 10971114, https://doi.org/10.1175/2008JPO4033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, https://doi.org/10.1029/2001JC001210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horne, E. P. W., and J. M. Toole, 1980: Sensor response mismatches and lag correction techniques for temperature-salinity profilers. J. Phys. Oceanogr., 10, 11221130, https://doi.org/10.1175/1520-0485(1980)010<1122:SRMALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., T. P. Rippeth, and T. J. Sherwin, 2000: Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J. Geophys. Res., 105, 86878705, https://doi.org/10.1029/1999JC900299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P. R., and C. R. Rehmann, 2014: Experiments on differential scalar mixing in turbulence in a sheared, stratified flow. J. Phys. Oceanogr., 44, 26612680, https://doi.org/10.1175/JPO-D-14-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, https://doi.org/10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2007: On leakage of energy from turbulence to internal waves in the oceanic mixed layer. Ocean Dyn., 57, 151156, https://doi.org/10.1007/s10236-006-0100-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitade, Y., and M. Matsuyama, 1997: Characteristics of internal tides in the upper layer of Sagami Bay. J. Oceanogr., 53, 143159, https://www.terrapub.co.jp/journals/JO/abstract/5302/53020143.html.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, https://doi.org/10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., L. C. St. Laurent, J. B. Girton, and J. M. Toole, 2011: Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41, 241246, https://doi.org/10.1175/2010JPO4557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I. D., and H. J. S. Fernando, 2013: Mixing efficiency in natural flows. Philos. Trans. Roy. Soc. London, 371, 20120213, https://doi.org/10.1098/rsta.2012.0213.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and J. J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, 756768, https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macoun, P., and R. Lueck, 2004: Modeling the spatial response of the airfoil shear probe using different sized probes. J. Atmos. Oceanic Technol., 21, 284297, https://doi.org/10.1175/1520-0426(2004)021<0284:MTSROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. R. Peltier, 2013: Shear-induced mixing in geophysical flows: Does the route to turbulence matter to its efficiency? J. Fluid Mech., 725, 216261, https://doi.org/10.1017/jfm.2013.176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and W. R. Peltier, 2013: Time-dependent, non-monotonic mixing in stratified turbulent shear flows: Implications for oceanographic estimates of buoyancy flux. J. Fluid Mech., 736, 570593, https://doi.org/10.1017/jfm.2013.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. P. Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, https://doi.org/10.1175/JPO-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuyama, M., S. Ohta, T. Hibiya, and H. Yamada, 1993: Strong tidal currents observed near the bottom in the Suruga Trough, central Japan. J. Oceanogr., 49, 683696, https://doi.org/10.1007/BF02276752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead Silvester, J., Y.-D. Lenn, J. A. Polton, T. P. Rippeth, and M. Morales Maqueda, 2014: Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water. Geophys. Res. Lett., 41, 79507956, https://doi.org/10.1002/2014GL061538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, https://doi.org/10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Andersen, N. Larson, E. D’Asaro, and T. Boyd, 1994: The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 11511164, https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, https://doi.org/10.1029/96JC00508.

  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., A. Nishina, Z. Liu, F. Tanaka, M. Wimbush, and J.-H. Park, 2013: Intermediate and deep water formation in the Okinawa Trough. J. Geophys. Res. Oceans, 118, 68816893, https://doi.org/10.1002/2013JC009326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishina, A., H. Nakamura, J.-H. Park, D. Hasegawa, Y. Tanaka, S. Seo, and T. Hibiya, 2016: Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow. J. Geophys. Res. Oceans, 121, 60926102, https://doi.org/10.1002/2016JC011822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2014: Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modell., 80, 5973, https://doi.org/10.1016/j.ocemod.2014.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., and B. J. W. Greenan, 2004: Mixing in a coastal environment: 2. A view from microstructure measurements. J. Geophys. Res., 109, C10014, https://doi.org/10.1029/2003JC002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohwaki, A., M. Matsuyama, and S. Iwata, 1991: Evidence for predominance of internal tidal currents in Sagami and Suruga Bays. J. Oceanogr. Soc. Japan, 47, 194206, https://doi.org/10.1007/BF02310035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1, 853860.

  • Palmer, M. R., T. P. Rippeth, and J. H. Simpson, 2008: An investigation of internal mixing in a seasonally stratified shelf sea. J. Geophys. Res., 113, C12005, https://doi.org/10.1029/2007JC004531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and C. P. Caulfield, 2003: Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech., 35, 135167, https://doi.org/10.1146/annurev.fluid.35.101101.161144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., and M. C. Gregg, 1988: Some dynamical and statistical properties of equatorial turbulence. Small-Scale Turbulence and Mixing in the Ocean, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier Oceanography Series, Vol. 46, Elsevier, 185–200, https://doi.org/10.1016/S0422-9894(08)70546-4.

    • Crossref
    • Export Citation
  • Peterson, A. K., and I. Fer, 2014: Dissipation measurements using temperature microstructure from an underwater glider. Methods Oceanogr., 10, 4469, https://doi.org/10.1016/j.mio.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, https://doi.org/10.1029/2008GL033532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., D. Walsh, and N. Oakey, 1997: Variations in apparent mixing efficiency in the North Atlantic Central Water. J. Phys. Oceanogr., 27, 25892605, https://doi.org/10.1175/1520-0485(1997)027<2589:VIAMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., C. P. Caulfield, and W. R. Peltier, 2016: Turbulent mixing due to the Holmboe wave instability at high Reynolds number. J. Fluid Mech., 803, 591621, https://doi.org/10.1017/jfm.2016.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: Energetics arguments and turbulence simulations. J. Phys. Oceanogr., 45, 25222543, https://doi.org/10.1175/JPO-D-14-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2014: Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech., 740, 114135, https://doi.org/10.1017/jfm.2013.643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2016: The mixing efficiency of stratified turbulent boundary layers. J. Phys. Oceanogr., 46, 31813191, https://doi.org/10.1175/JPO-D-16-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, https://doi.org/10.1017/S0022112004002587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., N. S. Lucas, B. Powell, and S. C. Maberly, 2015: Dissipation and mixing during the onset of stratification in a temperate lake, Windermere. Limnol. Oceanogr., 60, 2941, https://doi.org/10.1002/lno.10008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, https://doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1915: Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London, 215, 126, https://doi.org/10.1098/rsta.1915.0001.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, 151, 421444, https://doi.org/10.1098/rspa.1935.0158.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, 286, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947959, https://doi.org/10.1029/96JC03160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and J. R. Koseff, 2016: On the flux Richardson number in stably stratified turbulence. J. Fluid Mech., 798, R1, https://doi.org/10.1017/jfm.2016.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., M. E. Squibb, C. B. Woodson, J. R. Koseff, and S. G. Monismith, 2014: Stratified turbulence in the nearshore coastal ocean: Dynamics and evolution in the presence of internal bores. J. Geophys. Res. Oceans, 119, 87098730, https://doi.org/10.1002/2014JC010396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolk, F., H. Yamazaki, L. Seuront, and R. G. Lueck, 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780793, https://doi.org/10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and T. Osborn, 1990: Dissipation estimates for stratified turbulence. J. Geophys. Res., 95, 97399744, https://doi.org/10.1029/JC095iC06p09739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and T. Osborn, 1993: Direct estimation of heat flux in a seasonal thermocline. J. Phys. Oceanogr., 23, 503516, https://doi.org/10.1175/1520-0485(1993)023<0503:DEOHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 23
PDF Downloads 54 54 23

Observed Variations in Turbulent Mixing Efficiency in the Deep Ocean

View More View Less
  • 1 Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.

Current affiliation: Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takashi Ijichi, tijichi@whoi.edu

Abstract

Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.

Current affiliation: Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takashi Ijichi, tijichi@whoi.edu
Save