• Aagaard, K., and R. A. Woodgate, 2001: Some thoughts on the freezing and melting of sea ice and their effects on the ocean. Ocean Modell., 3, 127135, https://doi.org/10.1016/S1463-5003(01)00005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aagaard, K., J. H. Swift, and E. C. Carmack, 1985: Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res., 90, 48334846, https://doi.org/10.1029/JC090iC03p04833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Årthun, M., R. B. Ingvaldsen, L. H. Smedsrud, and C. Schrum, 2011: Dense water formation and circulation in the Barents Sea. Deep-Sea Res. I, 58, 801817, https://doi.org/10.1016/j.dsr.2011.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim Archive: Version 2.0. ERA Rep. Series 1, 23 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.

  • Bochkov, Y. A., 1982: Water temperature in the 0-200 m layer in the Kola-Meridian section in the Barents Sea, 1900–1981 (in Russian). Sb. Nauchn. Tr. PINRO Murm., 46, 113122.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., 2007: The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep-Sea Res. II, 54, 25782598, https://doi.org/10.1016/j.dsr2.2007.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., S. Tietsche, and E. Hawkins, 2014: Pan-arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, https://doi.org/10.1175/JCLI-D-13-00614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, S. R., J. H. Morison, and J. Zhang, 2017: An edge-referenced surface fresh layer in the Beaufort Sea seasonal ice zone. J. Phys. Oceanogr., 47, 11251144, https://doi.org/10.1175/JPO-D-16-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. A. Carton, G. A. Chepurin, M. Steele, and S. Hakkinen, 2016: Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models. J. Geophys. Res. Oceans, 121, 20432057, https://doi.org/10.1002/2015JC011124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and Coauthors, 2014: Heat loss from the Atlantic water layer in the northern Kara Sea: Causes and consequences. Ocean Sci., 10, 719730, https://doi.org/10.5194/os-10-719-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and Coauthors, 2015: Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. J. Geophys. Res. Oceans, 120, 51585178, https://doi.org/10.1002/2015JC010804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingsen, I., D. Slagstad, and A. Sundfjord, 2009: Modification of water masses in the Barents Sea and its coupling to ice dynamics: A model study. Ocean Dyn., 59, 10951108, https://doi.org/10.1007/s10236-009-0230-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., J. Meincke, S. Österhus, G. Rohardt, U. Schauer, V. Tverberg, J. Verduin, and R. A. Woodgate, 2001: Direct measurements of heat and mass transports through the Fram Strait. Polar Res., 20, 217224, https://doi.org/10.3402/polar.v20i2.6520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., and K. Drinkwater, 2014: Mixing in the Barents Sea Polar Front near Hopen in spring. J. Mar. Syst., 130, 206218, https://doi.org/10.1016/j.jmarsys.2012.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gammelsrød, T., Ø. Leikvin, V. Lien, W. P. Budgell, H. Loeng, and W. Maslowski, 2009: Mass and heat transports in the NE Barents Sea: Observations and models. J. Mar. Syst., 75, 5669, https://doi.org/10.1016/j.jmarsys.2008.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., and A. J. Plueddemann, 1995: Topographic control of thermohaline frontal structure in the Barents Sea Polar Front on the south flank of Spitsbergen Bank. J. Geophys. Res., 100, 45094524, https://doi.org/10.1029/94JC02427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, https://doi.org/10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C. L., A. J. Plueddemann, and G. G. Gawarkiewicz, 1998: Water mass distribution and polar front structure in the western Barents Sea. J. Geophys. Res., 103, 29052917, https://doi.org/10.1029/97JC02790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbaut, C., M.-N. Houssais, S. Close, and A.-C. Blaizot, 2015: Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep-Sea Res. I, 106, 97115, https://doi.org/10.1016/j.dsr.2015.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R. B., 2005: Width of the North Cape Current and location of the Polar Front in the western Barents Sea. Geophys. Res. Lett., 32, L16603, https://doi.org/10.1029/2005GL023440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R. B., H. Loeng, O. Geir, and A. Bjorn, 2003: Climate variability in the Barents Sea during the 20th century with a focus on the 1990s. ICES Mar. Sci. Symp., 219, 160168, http://www.ices.dk/sites/pub/PublicationReports/MarineScienceSymposia/Phase2/ICESMarineScienceSymposia-Volume219-2003-Part20of75.pdf.

    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R. B., L. Asplin, and H. Loeng, 2004: The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Cont. Shelf Res., 24, 10151032, https://doi.org/10.1016/j.csr.2004.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V., V. Alexeev, N. V. Koldunov, I. Repina, A. B. Sandø, L. H. Smedsrud, and A. Smirnov, 2016: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback. J. Phys. Oceanogr., 46, 14371456, https://doi.org/10.1175/JPO-D-15-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karcher, M., A. Beszczynska-Möller, F. Kauker, R. Gerdes, S. Heyen, B. Rudels, and U. Schauer, 2011: Arctic Ocean warming and its consequences for the Denmark Strait overflow. J. Geophys. Res., 116, C02037, https://doi.org/10.1029/2010JC006265.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., U. Mikolajewicz, J. H. Jungclaus, and A. Kroll, 2009: Sea ice in the Barents Sea: Seasonal to interannual variability and climate feedbacks in a global coupled model. Climate Dyn., 32, 11191138, https://doi.org/10.1007/s00382-008-0450-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2009: Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J. Climate, 22, 24382457, https://doi.org/10.1175/2008JCLI2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, K. M. H., C. Gonzalez-Pola, P. Fratantoni, A. Beszczynska-Möller, and S. L. E. Hughes, 2016: ICES Report on Ocean Climate 2015. ICES Cooperative Research Rep. 331, 79 pp., http://www.ices.dk/sites/pub/Publication%20Reports/Cooperative%20Research%20Report%20(CRR)/crr331/CRR%20331.pdf.

  • Levitus, S., G. Matishov, D. Seidov, and I. Smolyar, 2009: Barents Sea multidecadal variability. Geophys. Res. Lett., 36, L19604, https://doi.org/10.1029/2009GL039847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, V. S., P. Schlichtholz, Ø. Skagseth, and F. B. Vikebø, 2017: Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J. Climate, 30, 803812, https://doi.org/10.1175/JCLI-D-16-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, S., and R. B. Ingvaldsen, 2012: Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep-Sea Res. I, 62, 7088, https://doi.org/10.1016/j.dsr.2011.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, S., R. B. Ingvaldsen, and T. Furevik, 2016: Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea. Geophys. Res. Lett., 43, 52335242, https://doi.org/10.1002/2016GL068421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lique, C., A. M. Treguier, B. Blanke, and N. Grima, 2010: On the origins of water masses exported along both sides of Greenland: A Lagrangian model analysis. J. Geophys. Res. Oceans, 115, C05019, https://doi.org/10.1029/2009JC005316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeng, H., 1991: Features of the physical oceanographic conditions of the Barents Sea. Polar Res., 10, 518, https://doi.org/10.3402/polar.v10i1.6723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, Z., and W. Perrie, 2017: Changes in ocean temperature in the Barents Sea in the twenty-first century. J. Climate, 30, 59015921, https://doi.org/10.1175/JCLI-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowski, W., D. Marble, W. Walczowski, U. Schauer, J. L. Clement, and A. J. Semtner, 2004: On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J. Geophys. Res., 109, C03032, https://doi.org/10.1029/2001JC001039.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global algorithm for estimating Absolute Salinity. Ocean Sci., 8, 11231134, https://doi.org/10.5194/os-8-1123-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moat, B., S. Josey, and B. Sinhu, 2014: Impact of Barents Sea winter air-sea exchanges on Fram Strait dense water transport. J. Geophys. Res. Oceans, 119, 10091021, https://doi.org/10.1002/2013JC009220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Climate, 27, 88848901, https://doi.org/10.1175/JCLI-D-14-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750, https://doi.org/10.1126/science.aag2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., and M. Årthun, 2017: Toward an ice-free Barents Sea. Geophys. Res. Lett., 44, 83878395, https://doi.org/10.1002/2017GL074304.

  • Onarheim, I. H., T. Eldevik, M. Årthun, R. B. Ingvaldsen, and L. H. Smedsrud, 2015: Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett., 42, 53645371, https://doi.org/10.1002/2015GL064359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oziel, L., J. Sirven, and J. C. Gascard, 2016: The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci., 12, 169184, https://doi.org/10.5194/os-12-169-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oziel, L., and Coauthors, 2017: Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. Oceans, 122, 51215139, https://doi.org/10.1002/2016JC012582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, A. R., R. H. Bourke, R. D. Muench, C.-S. Chiu, J. F. Lynch, J. H. Miller, A. J. Plueddemann, and R. Pawlowicz, 1996: The Barents Sea Polar Front in summer. J. Geophys. Res., 101, 14 20114 221, https://doi.org/10.1029/96JC00119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291, https://doi.org/10.1126/science.aai8204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 2004: Recent progress on understanding the effects of rotation in models of sea straits. Deep-Sea Res. II, 51, 351369, https://doi.org/10.1016/j.dsr2.2003.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proudman, J., 1916: On the motion of solids in a liquid possessing vorticity. Proc. Roy. Soc. London, 92A, 408424, https://doi.org/10.1098/rspa.1916.0026.

    • Search Google Scholar
    • Export Citation
  • Reigstad, M., P. Wassmann, C. Wexels Riser, S. Øygarden, and F. Rey, 2002: Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea. J. Mar. Syst., 38, 929, https://doi.org/10.1016/S0924-7963(02)00167-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., L. G. Anderson, and E. P. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 88078821, https://doi.org/10.1029/96JC00143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., R. D. Muench, J. Gunn, U. Schauer, and H. J. Friedrich, 2000: Evolution of the Arctic Ocean boundary current north of the Siberian shelves. J. Mar. Syst., 25, 7799, https://doi.org/10.1016/S0924-7963(00)00009-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., M. Korhonen, U. Schauer, S. Pisarev, B. Rabe, and A. Wisotzki, 2015: Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog. Oceanogr., 132, 128152, https://doi.org/10.1016/j.pocean.2014.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauer, U., R. D. Muench, B. Rudels, and L. Timokhov, 1997: Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J. Geophys. Res., 102, 33713382, https://doi.org/10.1029/96JC03366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauer, U., H. Loeng, B. Rudels, V. K. Ozhigin, and W. Dieck, 2002: Atlantic Water flow through the Barents and Kara Seas. Deep-Sea Res. I, 49, 22812298, https://doi.org/10.1016/S0967-0637(02)00125-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., and M. N. Houssais, 2011: Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area. J. Geophys. Res., 116, C01006, https://doi.org/10.1029/2009JC005944.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, https://doi.org/10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, G. I., 2003: Dense water cascading off the continental shelf. J. Geophys. Res., 108, 3390, https://doi.org/10.1029/2002JC001610.

  • Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophys. Res. Lett., 43, 12 45712 465, https://doi.org/10.1002/2016GL071396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R. K., M. Maheshwari, S. R. Oza, and R. Kumar, 2013: Long-term variability in Arctic sea surface temperatures. Polar Sci., 7, 233240, https://doi.org/10.1016/j.polar.2013.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skagseth, Ø., 2008: Recirculation of Atlantic Water in the western Barents Sea. Geophys. Res. Lett., 35, L11606, https://doi.org/10.1029/2008GL033785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slagstad, D., and T. A. McClimans, 2005: Modeling the ecosystem dynamics of the Barents Sea including the marginal ice zone: I. Physical and chemical oceanography. J. Mar. Syst., 58, 118, https://doi.org/10.1016/j.jmarsys.2005.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. Nilsen, and Ø. Skagseth, 2010: Heat in the Barents Sea: Transport, storage, and surface fluxes. Ocean Sci., 6, 219234, https://doi.org/10.5194/os-6-219-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, https://doi.org/10.1002/rog.20017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snape, T., 2013: Decline of Arctic Sea Ice: Evaluation and weighting of CMIP5 projections. J. Geophys. Res. Atmos., 119, 546554, https://doi.org/10.1002/2013JD020593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, https://doi.org/10.1175/JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., and W. Ermold, 2015: Loitering of the retreating sea ice edge in the Arctic Seas. J. Geophys. Res. Oceans, 120, 76997721, https://doi.org/10.1002/2015JC011182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1917: Motion of solids in fluids when the flow is not irrotational. Proc. Roy. Soc. London, 93A, 99113, https://doi.org/10.1098/rspa.1917.0007.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and W. J. Emery, 2014: Data Analysis Methods in Physical Oceanography. 3rd ed., Elsevier, 728 pp.

  • Våge, S., S. L. Basedow, K. S. Tande, and M. Zhou, 2014: Physical structure of the Barents Sea Polar Front near Storbanken in August 2007. J. Mar. Syst., 130, 256262, https://doi.org/10.1016/j.jmarsys.2011.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., and L. A. Mysak, 2000: Is there a dominant timescale of natural climate variability in the Arctic? J. Climate, 13, 34123434, https://doi.org/10.1175/1520-0442(2000)013<3412:ITADTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherall, P., and Coauthors, 2015: A new digital bathymetric model of the world’s oceans. Earth Space Sci., 2, 331345, https://doi.org/10.1002/2015EA000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. F. Price, 2000: Water-mass formation and potential vorticity balance in an abyssal ocean circulation. J. Mar. Res., 58, 789808, https://doi.org/10.1357/002224000321358918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X. Y., X. Yuan, and M. Ting, 2016: Dynamical link between the Barents-Kara sea ice and the arctic oscillation. J. Climate, 29, 51035122, https://doi.org/10.1175/JCLI-D-15-0669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 279 90
PDF Downloads 186 186 72

Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice

View More View Less
  • 1 Laboratoire d’Océanographie Physique et Spatiale, UMR 6523, CNRS-Ifremer-UBO-IRD, Brest, France
  • 2 School of Ocean Sciences, Bangor University, Bangor, United Kingdom
  • 3 Laboratoire d’Océanographie Physique et Spatiale, UMR 6523, CNRS-Ifremer-UBO-IRD, Brest, France
© Get Permissions
Restricted access

Abstract

Barents Sea Water (BSW) is formed from Atlantic Water that is cooled through atmospheric heat loss and freshened through seasonal sea ice melt. In the eastern Barents Sea, the BSW and fresher, colder Arctic Water meet at the surface along the Polar Front (PF). Despite its importance in setting the northern limit of BSW ventilation, the PF has been poorly documented, mostly eluding detection by observational surveys that avoid seasonal sea ice. In this study, satellite sea surface temperature (SST) observations are used in addition to a temperature and salinity climatology to examine the location and structure of the PF and characterize its variability over the period 1985–2016. It is shown that the PF is independent of the position of the sea ice edge and is a shelf slope current constrained by potential vorticity. The main driver of interannual variability in SST is the variability of the Atlantic Water temperature, which has significantly increased since 2005. The SST gradient associated with the PF has also increased after 2005, preventing sea ice from extending south of the front during winter in recent years. The disappearance of fresh, seasonal sea ice melt south of the PF has led to a significant increase in BSW salinity and density. As BSW forms the majority of Arctic Intermediate Water, changes to BSW properties may have far-reaching impacts for Arctic Ocean circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Barton, benjamin.barton@univ-brest.fr

Abstract

Barents Sea Water (BSW) is formed from Atlantic Water that is cooled through atmospheric heat loss and freshened through seasonal sea ice melt. In the eastern Barents Sea, the BSW and fresher, colder Arctic Water meet at the surface along the Polar Front (PF). Despite its importance in setting the northern limit of BSW ventilation, the PF has been poorly documented, mostly eluding detection by observational surveys that avoid seasonal sea ice. In this study, satellite sea surface temperature (SST) observations are used in addition to a temperature and salinity climatology to examine the location and structure of the PF and characterize its variability over the period 1985–2016. It is shown that the PF is independent of the position of the sea ice edge and is a shelf slope current constrained by potential vorticity. The main driver of interannual variability in SST is the variability of the Atlantic Water temperature, which has significantly increased since 2005. The SST gradient associated with the PF has also increased after 2005, preventing sea ice from extending south of the front during winter in recent years. The disappearance of fresh, seasonal sea ice melt south of the PF has led to a significant increase in BSW salinity and density. As BSW forms the majority of Arctic Intermediate Water, changes to BSW properties may have far-reaching impacts for Arctic Ocean circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Barton, benjamin.barton@univ-brest.fr
Save