• Carpenter, J. R., and M.-L. Timmermans, 2014: Does rotation influence double-diffusive fluxes in polar oceans? J. Phys. Oceanogr., 44, 289296, https://doi.org/10.1175/JPO-D-13-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., T. Sommer, and A. Wüest, 2012: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech., 711, 411436, https://doi.org/10.1017/jfm.2012.399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feistel, R., G. Nausch, and N. Wasmund, Eds., 2008: State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. Wiley-Interscience, 703 pp.

    • Crossref
    • Export Citation
  • Flanagan, J., A. Lefler, and T. Radko, 2013: Heat transport through diffusive interfaces. Geophys. Res. Lett., 40, 24662470, https://doi.org/10.1002/grl.50440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garau, B., S. Ruiz, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintoré, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, https://doi.org/10.1175/JTECH-D-10-05030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. Morison, 2015: Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res. Oceans, 120, 78807896, https://doi.org/10.1002/2015JC010884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. Morison, 2017: Thermohaline staircases in the Amundsen Basin: Possible disruption by shear and mixing. J. Geophys. Res. Oceans, 122, 77677782, https://doi.org/10.1002/2017JC012993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Carpenter, 2016: Energy and variance budgets of a diffusive staircase with implications for heat flux scaling. J. Phys. Oceanogr., 46, 25532569, https://doi.org/10.1175/JPO-D-15-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtermann, P., L. Umlauf, T. Tanhua, O. Schmale, G. Rehder, and J. Waniek, 2012: The Baltic Sea Tracer Release Experiment. 1. Mixing rates. J. Geophys. Res., 117, C01021, https://doi.org/10.1029/2011JC007439.

    • Search Google Scholar
    • Export Citation
  • Holtermann, P., R. Prien, V. Mohrholz, and L. Umlauf, 2017: Deep-water dynamics and mixing processes during a major inflow event in the central Baltic Sea. J. Geophys. Res. Oceans, 122, 66486667, https://doi.org/10.1002/2017JC013050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Kelley, D. E., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95, 33653371, https://doi.org/10.1029/JC095iC03p03365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., H. J. S. Fernando, A. E. Gargett, J. Tanny, and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481, https://doi.org/10.1016/S0079-6611(03)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmina, N., B. Rudels, T. Stipa, and V. Zhurbas, 2005: The structure and driving mechanisms of the Baltic intrusions. J. Phys. Oceanogr., 35, 11201137, https://doi.org/10.1175/JPO2749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lappe, C., and L. Umlauf, 2016: Efficient boundary mixing due to near-inertial waves in a nontidal basin: Observations from the Baltic Sea. J. Geophys. Res. Oceans, 121, 82878304, https://doi.org/10.1002/2016JC011985.

    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., D. Smeed, and G. Griffiths, 2010: Vertical velocities from underwater gliders. J. Atmos. Oceanic Technol., 27, 547563, https://doi.org/10.1175/2009JTECHO710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prien, R. D., and D. E. Schulz-Bull, 2016: Technical note: GODESS—A profiling mooring in the Gotland Basin. Ocean Sci., 12, 899907, https://doi.org/10.5194/os-12-899-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2003: A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech., 497, 365380, https://doi.org/10.1017/S0022112003006785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2013: Double-Diffusive Convection. Cambridge University Press, 342 pp.

    • Crossref
    • Export Citation
  • Radko, T., J. Flanagan, S. Stellmach, and M.-L. Timmermans, 2014: Double-diffusive recipes. Part II: layer-merging events. J. Phys. Oceanogr., 44, 12851305, https://doi.org/10.1175/JPO-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T., B. Lincoln, Y.-D. Lenn, J. M. Green, A. Sundfjord, and S. Bacon, 2015: Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat. Geosci., 8, 191194, https://doi.org/10.1038/ngeo2350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, R., L. Padman, and M. Levine, 1995: Fine structure, microstructure, and vertical mixing processes in the upper ocean in the western Weddell Sea. J. Geophys. Res., 100, 18 51718 535, https://doi.org/10.1029/95JC01742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez, X., and E. Roget, 2007: Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime. J. Geophys. Res., 112, C02012, https://doi.org/10.1029/2006JC003750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheifele, B., R. Pawlowicz, T. Sommer, and A. Wüest, 2014: Double diffusion in saline Powell Lake, British Columbia. J. Phys. Oceanogr., 44, 28932908, https://doi.org/10.1175/JPO-D-14-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, M., M. Busbridge, and A. Wüest, 2010: Double-diffusive convection in Lake Kivu. Limnol. Oceanogr., 55, 225238, https://doi.org/10.4319/lo.2010.55.1.0225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharqawy, M. H., J. H. Lienhard, and S. M. Zubair, 2010: Thermophysical properties of seawater: A review of existing correlations and data. Desalin. Water Treat., 16, 354380, https://doi.org/10.5004/dwt.2010.1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N. C., M.-L. Timmermans, J. R. Carpenter, and J. M. Toole, 2017: Spatial variability of the Arctic Ocean’s double-diffusive staircase. J. Geophys. Res. Oceans, 122, 980994, https://doi.org/10.1002/2016JC012419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2012: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing. J. Geophys. Res., 117, C07010, https://doi.org/10.1029/2012JC007910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, T., J. Carpenter, M. Schmid, R. Lueck, M. Schurter, and A. Wüest, 2013a: Interface structure and flux laws in a natural double-diffusive layering. J. Geophys. Res. Oceans, 118, 60926106, https://doi.org/10.1002/2013JC009166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, T., J. Carpenter, M. Schmid, R. Lueck, and A. Wüest, 2013b: Revisiting microstructure sensor responses with implications for double-diffusive fluxes. J. Atmos. Oceanic Technol., 30, 19071923, https://doi.org/10.1175/JTECH-D-12-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, T., J. Carpenter, and A. Wüest, 2014: Double-diffusive interfaces in Lake Kivu reproduced by direct numerical simulations. Geophys. Res. Lett., 41, 51145121, https://doi.org/10.1002/2014GL060716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., C. Garrett, and E. Carmack, 2003: The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean. Deep-Sea Res. I, 50, 13051321, https://doi.org/10.1016/S0967-0637(03)00125-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. M. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, https://doi.org/10.1029/2008JC004829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Lee, E. M., and L. Umlauf, 2011: Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J. Geophys. Res., 116, C10016, https://doi.org/10.1029/2011JC007072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieczorek, G., E. Hagen, and L. Umlauf, 2008: Eastern Gotland Basin case study of thermal variability in the wake of deep water intrusions. J. Mar. Res., 74 (Suppl.), S65S97, https://doi.org/10.1016/j.jmarsys.2008.07.008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 15
PDF Downloads 25 25 9

Diffusive Convection under Rapidly Varying Conditions

View More View Less
  • 1 Leibniz Institute for Baltic Sea Research, Warnemuende, Germany
  • 2 Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
© Get Permissions
Restricted access

Abstract

In most observations of diffusive convection in the ocean and in lakes, the characteristic diffusive staircases evolve over long time scales under quasi-stationary background conditions. In the Baltic Sea, however, diffusive staircases develop inside the flanks of intermittent intrusions that induce strong inverse temperature gradients over a vertical range of a few meters, varying on time scales of hours to days. Here, results are discussed from an extensive field campaign conducted in summer 2016 in the southern Baltic Sea, including temperature microstructure data from ocean gliders and an autonomous profiling platform. We find conditions favorable for diffusive instability in the vicinity of warm and cold intrusions with density ratios as small as Rρ = 1.3. The staircases evolving under these conditions are characterized by a small number of steps (typically 1–4) with order 0.1–1-m thickness, temperature differences exceeding 1 K across individual diffusive interfaces, and exceptionally large diffusive heat fluxes of order 10 W m−2. The standard heat flux parameterization of Kelley agrees within a factor of 2 with the directly observed interfacial heat fluxes, except for large fluxes at low Rρ, which are strongly overestimated. The glider surveys reveal a surprisingly small lateral coherency of order 100 m of the staircase patterns, and a spreading of the diffusively unstable intrusions across isopycnals.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Umlauf, lars.umlauf@io-warnemuende.de

Abstract

In most observations of diffusive convection in the ocean and in lakes, the characteristic diffusive staircases evolve over long time scales under quasi-stationary background conditions. In the Baltic Sea, however, diffusive staircases develop inside the flanks of intermittent intrusions that induce strong inverse temperature gradients over a vertical range of a few meters, varying on time scales of hours to days. Here, results are discussed from an extensive field campaign conducted in summer 2016 in the southern Baltic Sea, including temperature microstructure data from ocean gliders and an autonomous profiling platform. We find conditions favorable for diffusive instability in the vicinity of warm and cold intrusions with density ratios as small as Rρ = 1.3. The staircases evolving under these conditions are characterized by a small number of steps (typically 1–4) with order 0.1–1-m thickness, temperature differences exceeding 1 K across individual diffusive interfaces, and exceptionally large diffusive heat fluxes of order 10 W m−2. The standard heat flux parameterization of Kelley agrees within a factor of 2 with the directly observed interfacial heat fluxes, except for large fluxes at low Rρ, which are strongly overestimated. The glider surveys reveal a surprisingly small lateral coherency of order 100 m of the staircase patterns, and a spreading of the diffusively unstable intrusions across isopycnals.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Umlauf, lars.umlauf@io-warnemuende.de
Save