Vorticity Balance off the South Shore of Oahu, Hawaii, Derived by High-Frequency Radio Doppler Current Observations

Alma Carolina Castillo-Trujillo Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Alma Carolina Castillo-Trujillo in
Current site
Google Scholar
PubMed
Close
,
Dale Partridge Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Dale Partridge in
Current site
Google Scholar
PubMed
Close
,
Brian Powell Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Brian Powell in
Current site
Google Scholar
PubMed
Close
, and
Pierre Flament Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pierre Flament in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-frequency radio Doppler surface current observations off the south shore of Oahu, Hawaii, are used to calculate the vorticity equation at a ~2-km spatial resolution in terms of a time-dependent and time-mean surface balance. First-order terms are mean advection of mean vorticity, vortex stretching, and a residual, which is treated as unquantified terms such as wind stress curl, bottom pressure torque, and noise. The most striking feature in the 2-yr time-mean vorticity balance is the anticorrelation between advection of vorticity and vortex stretching implying that potential vorticity (PV) advection is the most dominant mechanism in the area. Several terms in the depth-integrated vorticity balance were also estimated. The bottom pressure torque acts as a first-order term only in areas of shallow topography. A PV analysis resulted in the 50-m Penguin Bank steering the westward Hawaiian Lee Current.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alma Carolina Castillo-Trujillo, acast@hawaii.edu

Abstract

High-frequency radio Doppler surface current observations off the south shore of Oahu, Hawaii, are used to calculate the vorticity equation at a ~2-km spatial resolution in terms of a time-dependent and time-mean surface balance. First-order terms are mean advection of mean vorticity, vortex stretching, and a residual, which is treated as unquantified terms such as wind stress curl, bottom pressure torque, and noise. The most striking feature in the 2-yr time-mean vorticity balance is the anticorrelation between advection of vorticity and vortex stretching implying that potential vorticity (PV) advection is the most dominant mechanism in the area. Several terms in the depth-integrated vorticity balance were also estimated. The bottom pressure torque acts as a first-order term only in areas of shallow topography. A PV analysis resulted in the 50-m Penguin Bank steering the westward Hawaiian Lee Current.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alma Carolina Castillo-Trujillo, acast@hawaii.edu
Save
  • Azevedo Correia de Souza, J. M., B. Powell, A. C. Castillo-Trujillo, and P. Flament, 2015: The vorticity balance of the ocean surface in Hawaii from a regional reanalysis. J. Phys. Oceanogr., 45, 424440, https://doi.org/10.1175/JPO-D-14-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and J. Allen, 1978: On the effect of bottom friction on barotropic motion over the continental shelf. J. Phys. Oceanogr., 8, 919922, https://doi.org/10.1175/1520-0485(1978)008<0919:OTEOBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calil, P. H., K. J. Richards, Y. Jia, and R. R. Bidigare, 2008: Eddy activity in the lee of the Hawaiian Islands. Deep-Sea Res. II, 55, 11791194, https://doi.org/10.1016/j.dsr2.2008.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castillo-Trujillo, A., 2014: Low frequency currents south of Oahu, Hawaii. M.S. thesis, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, 56 pp.

  • Chavanne, C., P. Flament, R. Lumpkin, B. Dousset, and A. Bentamy, 2002: Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven ocean circulation. Can. J. Remote Sens., 28, 466474, https://doi.org/10.5589/m02-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., I. Janeković, P. Flament, P.-M. Poulain, M. Kuzmić, and K.-W. Gurgel, 2007: Tidal currents in the northwestern Adriatic: High-frequency radio observations and numerical model predictions. J. Geophys. Res., 112, C03S21, https://doi.org/10.1029/2006JC003523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, G. Carter, M. Merrifield, D. Luther, E. Zaron, and K. Gurgel, 2010a: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part I: Observations and numerical predictions. J. Phys. Oceanogr., 40, 11551179, https://doi.org/10.1175/2010JPO4222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, and K.-W. Gurgel, 2010b: Interactions between a submesoscale anticyclonic vortex and a front. J. Phys. Oceanogr., 40, 18021818, https://doi.org/10.1175/2010JPO4055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G., 1978: The arrested topographic wave. J. Phys. Oceanogr., 8, 4762, https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., G. Antonischki, H.-H. Essen, and T. Schlick, 1999a: Wellen radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coastal Eng., 37, 219234, https://doi.org/10.1016/S0378-3839(99)00027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., H.-H. Essen, and S. Kingsley, 1999b: High-frequency radars: Physical limitations and recent developments. Coastal Eng., 37, 201218, https://doi.org/10.1016/S0378-3839(99)00026-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, https://doi.org/10.1029/2004JC002753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janeković, I., B. Powell, D. Matthews, M. McManus, and J. Sevadjian, 2013: 4D-Var data assimilation in a nested, coastal ocean model: A Hawaiian case study. J. Geophys. Res. Oceans, 118, 50225035, https://doi.org/10.1002/jgrc.20389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., P. Calil, E. Chassignet, E. Metzger, J. Potemra, K. Richards, and A. J. Wallcraft, 2011: Generation of mesoscale eddies in the lee of the Hawaiian Islands. J. Geophys. Res., 116, C11009, https://doi.org/10.1029/2011JC007305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., O. Nøst, and P. Isachsen, 2008: Asymmetry of free circulations in closed ocean gyres. J. Phys. Oceanogr., 38, 517526, https://doi.org/10.1175/2007JPO3789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B., and D. Barrick, 1983: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE. IEEE J. Oceanic Eng., 8, 226253, https://doi.org/10.1109/JOE.1983.1145578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, C., 1998: Eddies and currents of the Hawaiian Islands. Ph.D. thesis, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, 282 pp.

  • Lumpkin, R., and P. J. Flament, 2013: Extent and energetics of the Hawaiian lee countercurrent. Oceanography, 26, 5865, https://doi.org/10.5670/oceanog.2013.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, D., B. Powell, and I. Janeković, 2012: Analysis of four-dimensional variational state estimation of the Hawaiian waters. J. Geophys. Res., 117, C03013 https://doi.org/10.1029/2011JC007575.

    • Crossref
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, B., A. Moore, H. Arango, E. Di Lorenzo, R. Milliff, and R. Leben, 2009: Near real-time ocean circulation assimilation and prediction in the Intra-Americas Sea with ROMS. Dyn. Atmos. Oceans, 48, 4668, https://doi.org/10.1016/j.dynatmoce.2009.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röhrs, J., A. K. Sperrevik, K. H. Christensen, G. Broström, and Ø. Breivik, 2015: Comparison of HF radar measurements with Eulerian and Lagrangian surface currents. Ocean Dyn., 65, 679690, https://doi.org/10.1007/s10236-015-0828-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res., 12, 355367, https://doi.org/10.1016/0011-7471(65)90007-0.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep- Sea Res., 21, 10391049, https://doi.org/10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and H. J. Freeland, 2003: Topographic steering of a mid-depth drifter in an eddy-like circulation region south and east of the Hawaiian Ridge. J. Geophys. Res., 108, 3341, https://doi.org/10.1029/2002JC001715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., and Y.-L. Chen, 2011: Favorable conditions for the development of a heavy rainfall event over Oahu during the 2006 wet period. Wea. Forecasting, 26, 280300, https://doi.org/10.1175/2010WAF2222449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, https://doi.org/10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, S., B. Qiu, and P. Hacker, 2011: Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: Observations and connection to the Pacific Decadal Oscillation. J. Geophys. Res., 116, C12009, https://doi.org/10.1029/2011JC007286.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1044 624 38
PDF Downloads 534 64 6