Energy Conversion Routes in the Western Mediterranean Sea Estimated from Eddy–Mean Flow Interactions

Esther Capó IMEDEA (Spanish National Research Council–University of the Balearic Islands), Esporles, Spain

Search for other papers by Esther Capó in
Current site
Google Scholar
PubMed
Close
,
Alejandro Orfila IMEDEA (Spanish National Research Council–University of the Balearic Islands), Esporles, Spain

Search for other papers by Alejandro Orfila in
Current site
Google Scholar
PubMed
Close
,
Evan Mason IMEDEA (Spanish National Research Council–University of the Balearic Islands), Esporles, Spain, and Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Evan Mason in
Current site
Google Scholar
PubMed
Close
, and
Simón Ruiz IMEDEA (Spanish National Research Council–University of the Balearic Islands), Esporles, Spain

Search for other papers by Simón Ruiz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Energy conversion routes are investigated in the western Mediterranean Sea from the eddy–mean flow interactions. The sources of eddy kinetic energy are analyzed by applying a regional formulation of the Lorenz energy cycle to 18 years of numerical simulation at eddy-resolving resolution (3.5 km), which allows for identifying whether the energy exchange between the mean and eddy flow is local or nonlocal. The patterns of energy conversion between the mean and eddy kinetic and potential energy are estimated in three subregions of the domain: the Alboran Sea, the Algerian Basin, and the northern basin. The spatial characterization of the energy routes hints at the physical mechanisms involved in maintaining the balance, suggesting that flow–topography interaction is strongly linked to eddy growth in most of the domain.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Esther Capó, ecapo@imedea.uib-csic.es

Abstract

Energy conversion routes are investigated in the western Mediterranean Sea from the eddy–mean flow interactions. The sources of eddy kinetic energy are analyzed by applying a regional formulation of the Lorenz energy cycle to 18 years of numerical simulation at eddy-resolving resolution (3.5 km), which allows for identifying whether the energy exchange between the mean and eddy flow is local or nonlocal. The patterns of energy conversion between the mean and eddy kinetic and potential energy are estimated in three subregions of the domain: the Alboran Sea, the Algerian Basin, and the northern basin. The spatial characterization of the energy routes hints at the physical mechanisms involved in maintaining the balance, suggesting that flow–topography interaction is strongly linked to eddy growth in most of the domain.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Esther Capó, ecapo@imedea.uib-csic.es
Save
  • Beuvier, J., and Coauthors, 2012: Spreading of the Western Mediterranean Deep Water after winter 2005: Time scales and deep cyclone transport. J. Geophys. Res., 117, C07022, https://doi.org/10.1029/2011JC007679.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debreu, L., C. Vouland, and E. Blayo, 2008: AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci., 34, 813, https://doi.org/10.1016/j.cageo.2007.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escudier, R. M. P., 2015: Mesoscale eddies in the western Mediterranean Sea: Characterization and understanding from satellite observations and model simulations. Ph.D. thesis, Universitat de les Illes Balears, 288 pp., http://hdl.handle.net/10803/310417.

  • Escudier, R. M. P., L. Renault, A. Pascual, P. Brasseur, D. Chelton, and J. Beuvier, 2016: Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation. J. Geophys. Res. Oceans, 121, 39904006, https://doi.org/10.1002/2015JC011371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows—Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Carrasco, I., and A. Orfila, 2018: The role of an intense front on the connectivity of the western Mediterranean Sea: The Cartagena-Tenes front. J. Geophys. Res. Oceans, 123, 43984422, https://doi.org/10.1029/2017JC013613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heslop, E. E., S. Ruiz, J. Allen, J. L. López-Jurado, L. Renault, and J. Tintoré, 2012: Autonomous underwater gliders monitoring variability at “choke points” in our ocean system: A case study in the Western Mediterranean Sea. Geophys. Res. Lett., 39, L20604, https://doi.org/10.1029/2012GL053717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, https://doi.org/10.1357/0022240053693770.

  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, https://doi.org/10.1029/2007GL029985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malanotte-Rizzoli, P., and Coauthors, 2014: Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions for future research. Ocean Sci., 10, 281322, https://doi.org/10.5194/os-10-281-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., and A. Pascual, 2013: Multiscale variability in the Balearic Sea: An altimetric perspective. J. Geophys. Res. Oceans, 118, 30073025, https://doi.org/10.1002/jgrc.20234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., A. Pascual, and J. C. McWilliams, 2013: High resolution simulations and glider observations in the eastern Alboran Sea (Mediterranean Sea): Implications for vertical velocity estimates. Geophysical Research Abstracts, Vol. 15, Abstract 12311, https://meetingorganizer.copernicus.org/EGU2013/EGU2013-12311.pdf.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Millot, C., 1985: Some features of the Algerian Current. J. Geophys. Res., 90, 71697176, https://doi.org/10.1029/JC090iC04p07169.

  • Millot, C., 1999: Circulation in the western Mediterranean Sea. J. Mar. Syst., 20, 423442, https://doi.org/10.1016/S0924-7963(98)00078-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. K. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 4851, https://doi.org/10.1038/ngeo1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., L. A. Anderson, and J. P. Peixoto, 1994: Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 7665–7665, https://doi.org/10.1029/93JC03556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., and Coauthors, 2017: A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx). Front. Mar. Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessini, F., A. Olita, Y. Cotroneo, and A. Perilli, 2018: Mesoscale eddies in the Algerian Basin: Do they differ as a function of their formation site? Ocean Sci., 14, 669688, https://doi.org/10.5194/os-14-669-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinardi, N., and E. Masetti, 2000: Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol., 158, 153173, https://doi.org/10.1016/S0031-0182(00)00048-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, J.-M., J. L. López-Jurado, and M. Riera, 2002: The CANALES experiment (1996-1998). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr., 55, 335370, https://doi.org/10.1016/S0079-6611(02)00139-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Pujol, M. I., and G. Larnicol, 2005: Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst., 58, 121142, https://doi.org/10.1016/j.jmarsys.2005.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. O., B. A. Elliott, and D. B. Olson, 1981: Available potential energy: A clarification. J. Phys. Oceanogr., 11, 1529, https://doi.org/10.1175/1520-0485(1981)011<0015:APEAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., T. Oguz, A. Pascual, G. Vizoso, and J. Tintoré, 2012: Surface circulation in the Alborán Sea (western Mediterranean) inferred from remotely sensed data. J. Geophys. Res., 117, C08009, https://doi.org/10.1029/2011JC007659.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M., A. Pascual, P. Poulain, M. Menna, B. Barceló, and J. Tintoré, 2014: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci., 10, 731744, https://doi.org/10.5194/os-10-731-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., W. G. Leslie, A. Theocharis, and A. Lascaratos, 2001: Mediterranean Sea circulation. Encyclopedia of Ocean Sciences, J. H. Steele, S. A. Thorpe, and K. K. Turekian, Eds., Academic Press, 1689–1705, https://doi.org/10.1006/rwos.2001.0376.

    • Crossref
    • Export Citation
  • Sanz, J. L., M. Esteras, P. Herranz, C. Palomo, and N. Sandoval, 1991: Prospeccion Geofísica del Estrecho de Gibraltar (Resultados del Programa Hercules, 1980–1983). Publicaciones Especiales del Instituto Español de Oceanografía, Vol. 7, Ministerio de Agricultura, Pesca y Alimentación, 48 pp.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorgente, R., A. Olita, P. Oddo, L. Fazioli, and A. Ribotti, 2011: Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: Insight on mesoscale circulation and energy conversion. Ocean Sci., 7, 503519, https://doi.org/10.5194/os-7-503-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas-Yáñez, M., F. Plaza, J. García-Lafuente, T. Sarhan, J. M. Vargas, and P. Vélez-Belchi, 2002: About the seasonal variability of the Alboran Sea circulation. J. Mar. Syst., 35, 229248, https://doi.org/10.1016/S0924-7963(02)00128-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42 , 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., Z. Wang, and C. Liu, 2017: On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies. J. Geophys. Res. Oceans, 122, 24652493, https://doi.org/10.1002/2016JC012539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1435 764 26
PDF Downloads 583 106 7