Mixed Rossby–Gravity Wave–Wave Interactions

Carsten Eden Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
,
Manita Chouksey Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Manita Chouksey in
Current site
Google Scholar
PubMed
Close
, and
Dirk Olbers Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, and Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

Search for other papers by Dirk Olbers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mixed triad wave–wave interactions between Rossby and gravity waves are analytically derived using the kinetic equation for models of different complexity. Two examples are considered: initially vanishing linear gravity wave energy in the presence of a fully developed Rossby wave field and the reversed case of initially vanishing linear Rossby wave energy in the presence of a realistic gravity wave field. The kinetic equation in both cases is numerically evaluated, for which energy is conserved within numerical precision. The results are validated by a corresponding ensemble of numerical model simulations supporting the validity of the weak-interaction assumption necessary to derive the kinetic equation. Since they are generated by nonresonant interactions only, the energy transfers toward the respective linear wave mode with vanishing energy are small in both cases. The total generation of energy of the linear gravity wave mode in the first case scales to leading order as the square of the Rossby number in agreement with independent estimates from laboratory experiments, although a part of the linear gravity wave mode is slaved to the Rossby wave mode without wavelike temporal behavior.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de

Abstract

Mixed triad wave–wave interactions between Rossby and gravity waves are analytically derived using the kinetic equation for models of different complexity. Two examples are considered: initially vanishing linear gravity wave energy in the presence of a fully developed Rossby wave field and the reversed case of initially vanishing linear Rossby wave energy in the presence of a realistic gravity wave field. The kinetic equation in both cases is numerically evaluated, for which energy is conserved within numerical precision. The results are validated by a corresponding ensemble of numerical model simulations supporting the validity of the weak-interaction assumption necessary to derive the kinetic equation. Since they are generated by nonresonant interactions only, the energy transfers toward the respective linear wave mode with vanishing energy are small in both cases. The total generation of energy of the linear gravity wave mode in the first case scales to leading order as the square of the Rossby number in agreement with independent estimates from laboratory experiments, although a part of the linear gravity wave mode is slaved to the Rossby wave mode without wavelike temporal behavior.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de
Save
  • Baer, F., and J. J. Tribbia, 1977: On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev., 105, 15361539, https://doi.org/10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benney, D., 1977: A general theory for interactions between short and long waves. Stud. Appl. Math., 56, 8194, https://doi.org/10.1002/sapm197756181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, https://doi.org/10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float. J. Geophys. Res., 81, 19431950, https://doi.org/10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouksey, M., C. Eden, and N. Brüggemann, 2018: Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48, 17091730, https://doi.org/10.1175/JPO-D-17-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connaughton, C., S. Nazarenko, and B. Quinn, 2015: Rossby and drift wave turbulence and zonal flows: The Charney–Hasegawa–Mima model and its extensions. Phys. Rep., 604, 171, https://doi.org/10.1016/j.physrep.2015.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., L. Czeschel, and D. Olbers, 2014: Towards energetically consistent ocean models. J. Phys. Oceanogr., 44, 20932106, https://doi.org/10.1175/JPO-D-13-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., F. Pollmann, and D. Olbers, 2019: Numerical evaluation of energy transfers in internal gravity wave spectra of the ocean. J. Phys. Oceanogr., in press, https://doi.org/10.1175/JPO-D-18-0075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. McIntyre, and W. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, https://doi.org/10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 312 pp.

    • Crossref
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum. Part 1: General theory. J. Fluid Mech., 12, 481500, https://doi.org/10.1017/S0022112062000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1966: Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys., 4, 132, https://doi.org/10.1029/RG004i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502, https://doi.org/10.1080/03091927009365783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F., J. Wright, and S. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2016: Balance dynamics in rotating stratified turbulence. J. Fluid Mech., 795, 914949, https://doi.org/10.1017/jfm.2016.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2018: Spontaneous imbalance in the non-hydrostatic Boussinesq equations. J. Fluid Mech., 847, 614643, https://doi.org/10.1017/jfm.2018.338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K., 1964: Non-linear Rossby waves. Woods Hole Oceanographic Institution Rep., 14 pp.

  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence (in Russian). Dokl. Akad. Nauk SSSR, 32, 1921.

  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, https://doi.org/10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and J. J. Riley, 1991: Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 516 pp.

  • Longuet-Higgins, M., A. Gill, and K. Kenyon, 1967: Resonant interactions between planetary waves. Proc. Roy. Soc. London, 299A, 120144, https://doi.org/10.1098/rspa.1967.0126.

    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, https://doi.org/10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253271.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, https://doi.org/10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1977: Spectral features of the energy transfer between internal waves and a larger-scale shear flow. Dyn. Atmos. Oceans, 2, 4972, https://doi.org/10.1016/0377-0265(77)90015-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and D. Olbers, 1975: On the dynamics of internal waves in the deep ocean. J. Geophys. Res., 80, 38483860, https://doi.org/10.1029/JC080i027p03848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, S., 2011: Wave Turbulence. Springer, 279 pp.

  • Olbers, D., 1974: On the energy balance of small-scale internal waves in the deep sea. Hamburger Geophysikalische Einzelschriften 24, 91 pp.

  • Olbers, D., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399, https://doi.org/10.1017/S0022112076001857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomphrey, N., J. D. Meiss, and K. M. Watson, 1980: Description of nonlinear internal wave interactions using Langevin methods. J. Geophys. Res., 85, 10851094, https://doi.org/10.1029/JC085iC02p01085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, https://doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 400 pp.

    • Crossref
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., and R. Plougonven, 2016: Generation and backreaction of spontaneously emitted inertia-gravity waves. Geophys. Res. Lett., 43, 35193525, https://doi.org/10.1002/2016GL068219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2010: Internal Gravity Waves. Cambridge University Press, 377 pp.

    • Crossref
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, https://doi.org/10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., P. Read, and T. Haine, 2003: Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett., 30, 2255, https://doi.org/10.1029/2003GL018498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. Haine, and P. L. Read, 2005: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech., 528, 122, https://doi.org/10.1017/S0022112004002873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. Haine, and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 35433556, https://doi.org/10.1175/2008JAS2480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2489 1265 49
PDF Downloads 1101 233 13