Sill-Influenced Exchange Flows in Ice Shelf Cavities

Ken X. Zhao Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Ken X. Zhao in
Current site
Google Scholar
PubMed
Close
,
Andrew L. Stewart Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bathymetric sills are important features in the ocean-filled cavities beneath a few fast-retreating ice shelves in West Antarctica and northern Greenland. The sills can be high enough to obstruct the cavity circulation and thereby modulate glacial melt rates. This study focuses on the idealized problem of diabatically driven, sill-constrained overturning circulation in a cavity. The circulation beneath fast-melting ice shelves can generally be characterized by an inflow of relatively warm dense water (with temperatures of a few degrees Celsius above the local freezing point) at depth and cold, less-dense, outflowing water, which exhibits an approximately two-layer structure in observations. We use a two-layer isopycnal hydrostatic model to study the cross-sill exchange of these waters in ice shelf cavities wide enough to be rotationally dominated. A quasigeostrophic constraint is determined for the transport imposed by the stratification. Relative to this constraint, the key parameters controlling the transport and its variability are the sill height relative to the bottom layer thickness and the strength of the friction relative to the potential vorticity (PV) gradient imposed by the sill. By varying these two key parameters, we simulate a diversity of flow phenomena. For a given meridional pressure gradient, the cross-sill transport is controlled by sill height beyond a critical threshold in the eddy-permitting, low-friction regime, while it is insensitive to friction in both the low-friction and high-friction regimes. We present theoretical ideas to explain the flow characteristics: a Stommel boundary layer for the friction-dominated regime; mean–eddy PV balances and energy conversion in the low-friction, low-sill regime; and hydraulic control in the low-friction, high-sill regime, with various estimates for transport in each of these regimes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0076.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ken X. Zhao, kzhao@atmos.ucla.edu

Abstract

Bathymetric sills are important features in the ocean-filled cavities beneath a few fast-retreating ice shelves in West Antarctica and northern Greenland. The sills can be high enough to obstruct the cavity circulation and thereby modulate glacial melt rates. This study focuses on the idealized problem of diabatically driven, sill-constrained overturning circulation in a cavity. The circulation beneath fast-melting ice shelves can generally be characterized by an inflow of relatively warm dense water (with temperatures of a few degrees Celsius above the local freezing point) at depth and cold, less-dense, outflowing water, which exhibits an approximately two-layer structure in observations. We use a two-layer isopycnal hydrostatic model to study the cross-sill exchange of these waters in ice shelf cavities wide enough to be rotationally dominated. A quasigeostrophic constraint is determined for the transport imposed by the stratification. Relative to this constraint, the key parameters controlling the transport and its variability are the sill height relative to the bottom layer thickness and the strength of the friction relative to the potential vorticity (PV) gradient imposed by the sill. By varying these two key parameters, we simulate a diversity of flow phenomena. For a given meridional pressure gradient, the cross-sill transport is controlled by sill height beyond a critical threshold in the eddy-permitting, low-friction regime, while it is insensitive to friction in both the low-friction and high-friction regimes. We present theoretical ideas to explain the flow characteristics: a Stommel boundary layer for the friction-dominated regime; mean–eddy PV balances and energy conversion in the low-friction, low-sill regime; and hydraulic control in the low-friction, high-sill regime, with various estimates for transport in each of these regimes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0076.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ken X. Zhao, kzhao@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (ZIP 194.61 MB)
Save
  • Aiki, H., X. Zhai, and R. Greatbatch, 2016: Energetics of the global ocean: The role of mesoscale eddies. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific, 109–134.

    • Crossref
    • Export Citation
  • Borenas, K., and J. Whitehead, 1998: Upstream separation in a rotating channel flow. J. Geophys. Res., 103, 75677578, https://doi.org/10.1029/97JC02548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, C., E. Rignot, D. Menemenlis, and Y. Nakayama, 2017: Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland. Geophys. Res. Lett., 44, 83968403, https://doi.org/10.1002/2017GL073711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalziel, S., 1991: Two-layer hydraulics: A functional approach. J. Fluid Mech., 223, 135163, https://doi.org/10.1017/S0022112091001374.

  • De Rydt, J., and G. Gudmundsson, 2016: Coupled ice shelf–ocean modeling and complex grounding line retreat from a seabed ridge. J. Geophys. Res. Earth Surf., 121, 865880, https://doi.org/10.1002/2015JF003791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rydt, J., P. R. Holland, P. Dutrieux, and A. Jenkins, 2014: Geometric and oceanographic controls on melting beneath Pine Island Glacier. J. Geophys. Res. Oceans, 119, 24202438, https://doi.org/10.1002/2013JC009513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., and Coauthors, 2014: Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343, 174178, https://doi.org/10.1126/science.1244341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and W. K. Melville, 1996: Hydraulic jumps at boundaries in rotating fluids. J. Fluid Mech., 324, 5582, https://doi.org/10.1017/S0022112096007835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1977: The hydraulics of rotating-channel flow. J. Fluid Mech., 80, 641671, https://doi.org/10.1017/S0022112077002407.

  • Griffies, S., and R. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G. H., 2013: Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere, 7, 647655, https://doi.org/10.5194/tc-7-647-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G. H., J. Krug, G. Durand, L. Favier, and O. Gagliardini, 2012: The stability of grounding lines on retrograde slopes. Cryosphere, 6, 14971505, https://doi.org/10.5194/tc-6-1497-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26, 913940, https://doi.org/10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., A. C. Kuo, and L. J. Pratt, 1999: Nonlinear Rossby adjustment in a channel. J. Fluid Mech., 390, 187222, https://doi.org/10.1017/S0022112099005042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., W. K. Dewar, P. Berloff, and M. L. Ward, 2011: Kelvin wave hydraulic control induced by interactions between vortices and topography. J. Fluid Mech., 687, 194208, https://doi.org/10.1017/jfm.2011.344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., 2017: The transient response of ice shelf melting to ocean change. J. Phys. Oceanogr., 47, 21012114, https://doi.org/10.1175/JPO-D-17-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2008: The response of ice shelf basal melting to variations in ocean temperature. J. Climate, 21, 25582572, https://doi.org/10.1175/2007JCLI1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, https://doi.org/10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, S. McPhail, J. Perrett, A. Webb, and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, https://doi.org/10.1038/ngeo890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., R. B. Alley, and D. M. Holland, 2012: Ice-sheet response to oceanic forcing. Science, 338, 11721176, https://doi.org/10.1126/science.1226481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., B. E. Smith, and B. Medley, 2014: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344, 735738, https://doi.org/10.1126/science.1249055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., A. Jenkins, P. Dutrieux, A. Forryan, A. Naveira Garabato, and Y. Firing, 2016: Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica. J. Geophys. Res. Oceans, 121, 84968510, https://doi.org/10.1002/2016JC012149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, H., L. Gilbert, S. L. Cornford, A. J. Payne, A. Hogg, A. Muir, and A. Shepherd, 2017: Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 44, 910918, https://doi.org/10.1002/2016GL070733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Little, C. M., A. Gnanadesikan, and R. Hallberg, 2008: Large-scale oceanographic constraints on the distribution of melting and freezing under ice shelves. J. Phys. Oceanogr., 38, 22422255, https://doi.org/10.1175/2008JPO3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, C., N. Reeh, F. Jung-Rothenhäusler, P. Huybrechts, and H. Oerter, 2000: The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden Glacier, NE-Greenland. Geophys. Res. Lett., 27, 22892292, https://doi.org/10.1029/2000GL011514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouginot, J., E. Rignot, and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41, 15761584, https://doi.org/10.1002/2013GL059069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, M. Schröder, and H. Hellmer, 2014: On the difficulty of modeling circumpolar deep water intrusions onto the Amundsen Sea continental shelf. Ocean Modell., 84, 2634, https://doi.org/10.1016/j.ocemod.2014.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 1987: Rotating shocks in a separated laboratory channel flow. J. Phys. Oceanogr., 17, 483491, https://doi.org/10.1175/1520-0485(1987)017<0483:RSIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and L. Armi, 1990: Two-layer rotating hydraulics: Strangulation, remote and virtual controls. Pure Appl. Geophys., 133, 587617, https://doi.org/10.1007/BF00876224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. A. Whitehead, 2007: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Springer, 592 pp.

    • Crossref
    • Export Citation
  • Pratt, L. J., K. R. Helfrich, and E. P. Chassignet, 2000: Hydraulic adjustment to an obstacle in a rotating channel. J. Fluid Mech., 404, 117149, https://doi.org/10.1017/S0022112099007065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl, 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett., 41, 35023509, https://doi.org/10.1002/2014GL060140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, https://doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 2002: Numerical solution of the two-layer shallow water equations with bottom topography. J. Mar. Res., 60, 605638, https://doi.org/10.1357/002224002762324194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaffer, J., 2017: Ocean impact on the 79 North Glacier, Northeast Greenland. Ph.D. thesis, University of Bremen, 206 pp.

  • Schodlok, M., D. Menemenlis, E. Rignot, and M. Studinger, 2012: Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Ann. Glaciol., 53, 156162, https://doi.org/10.3189/2012AoG60A073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112, F03S282, https://doi.org/10.1029/2006JF000664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroussi, H., Y. Nakayama, E. Larour, D. Menemenlis, M. Morlighem, E. Rignot, and A. Khazendar, 2017: Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett., 44, 61916199, https://doi.org/10.1002/2017GL072910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580, https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M., 1974: Comment on rotating hydraulics. Geophys. Fluid Dyn., 6, 127130, https://doi.org/10.1080/03091927409365791.

  • St-Laurent, P., 2018: Back of Envelope Ocean Model (BEOM). Accessed 1 April 2018, www.nordet.net/beom.html.

  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2015: Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J. Geophys. Res. Oceans, 120, 67186732, https://doi.org/10.1002/2015JC010709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys., 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Whitehead, J. A., A. Leetmaa, and R. Knox, 1974: Rotating hydraulics of strait and sill flows. Geophys. Fluid Dyn., 6, 101125, https://doi.org/10.1080/03091927409365790.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1694 768 50
PDF Downloads 765 158 7