Diathermal Heat Transport in a Global Ocean Model

Ryan M. Holmes Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, and School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Ryan M. Holmes in
Current site
Google Scholar
PubMed
Close
,
Jan D. Zika School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Jan D. Zika in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. England Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rate at which the ocean moves heat from the tropics toward the poles, and from the surface into the interior, depends on diabatic surface forcing and diffusive mixing. These diabatic processes can be isolated by analyzing heat transport in a temperature coordinate (the diathermal heat transport). This framework is applied to a global ocean sea ice model at two horizontal resolutions (1/4° and 1/10°) to evaluate the partioning of the diathermal heat transport between different mixing processes and their spatial and seasonal structure. The diathermal heat transport peaks around 22°C at 1.6 PW, similar to the peak meridional heat transport. Diffusive mixing transfers this heat from waters above 22°C, where surface forcing warms the tropical ocean, to temperatures below 22°C where midlatitude waters are cooled. In the control 1/4° simulation, half of the parameterized vertical mixing is achieved by background diffusion, to which sensitivity is explored. The remainder is associated with parameterizations for surface boundary layer, shear instability, and tidal mixing. Nearly half of the seasonal cycle in the peak vertical mixing heat flux is associated with shear instability in the tropical Pacific cold tongue, highlighting this region’s global importance. The framework presented also allows for quantification of numerical mixing associated with the model’s advection scheme. Numerical mixing has a substantial seasonal cycle and increases to compensate for reduced explicit vertical mixing. Finally, applied to Argo observations the diathermal framework reveals a heat content seasonal cycle consistent with the simulations. These results highlight the utility of the diathermal framework for understanding the role of diabatic processes in ocean circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan M. Holmes, ryan.holmes@unsw.edu.au

Abstract

The rate at which the ocean moves heat from the tropics toward the poles, and from the surface into the interior, depends on diabatic surface forcing and diffusive mixing. These diabatic processes can be isolated by analyzing heat transport in a temperature coordinate (the diathermal heat transport). This framework is applied to a global ocean sea ice model at two horizontal resolutions (1/4° and 1/10°) to evaluate the partioning of the diathermal heat transport between different mixing processes and their spatial and seasonal structure. The diathermal heat transport peaks around 22°C at 1.6 PW, similar to the peak meridional heat transport. Diffusive mixing transfers this heat from waters above 22°C, where surface forcing warms the tropical ocean, to temperatures below 22°C where midlatitude waters are cooled. In the control 1/4° simulation, half of the parameterized vertical mixing is achieved by background diffusion, to which sensitivity is explored. The remainder is associated with parameterizations for surface boundary layer, shear instability, and tidal mixing. Nearly half of the seasonal cycle in the peak vertical mixing heat flux is associated with shear instability in the tropical Pacific cold tongue, highlighting this region’s global importance. The framework presented also allows for quantification of numerical mixing associated with the model’s advection scheme. Numerical mixing has a substantial seasonal cycle and increases to compensate for reduced explicit vertical mixing. Finally, applied to Argo observations the diathermal framework reveals a heat content seasonal cycle consistent with the simulations. These results highlight the utility of the diathermal framework for understanding the role of diabatic processes in ocean circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan M. Holmes, ryan.holmes@unsw.edu.au
Save
  • Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, https://doi.org/10.1016/0021-9991(84)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nilsson, J. Nycander, L. Brodeau, and M. Ballarotta, 2012: The World Ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, https://doi.org/10.1175/JPO-D-11-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Exarchou, E., T. Kuhlbrodt, J. M. Gregory, and R. S. Smith, 2015: Ocean heat uptake processes: A model intercomparison. J. Climate, 28, 887908, https://doi.org/10.1175/JCLI-D-14-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, https://doi.org/10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, A. H., A. M. Hogg, A. E. Kiss, C. J. Shakespeare, and A. Adcroft, 2017: Attribution of horizontal and vertical contributions to spurious mixing in an arbitrary Lagrangian–Eulerian ocean model. Ocean Modell., 119, 4556, https://doi.org/10.1016/j.ocemod.2017.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., H. Peters, J. Wesson, N. Oakey, and T. Shay, 1985: Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature, 318, 140144, https://doi.org/10.1038/318140a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the modular ocean model (MOM). GFDL Ocean Group Tech. Rep. 7, 620 pp.

  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., 47, 667687, https://doi.org/10.1175/JPO-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013: The budgets of heat and salinity in NEMO. Ocean Modell., 67, 2838, https://doi.org/10.1016/j.ocemod.2013.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., J. Nilsson, and J. Nycander, 2014: Water mass transformation in salinity–temperature space. J. Phys. Oceanogr., 44, 25472568, https://doi.org/10.1175/JPO-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2015: The modulation of equatorial turbulence by tropical instability waves in a regional ocean model. J. Phys. Oceanogr., 45, 11551173, https://doi.org/10.1175/JPO-D-14-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1982: On the annual cycle of the tropical Pacific atmosphere and ocean. Mon. Wea. Rev., 110, 18631878, https://doi.org/10.1175/1520-0493(1982)110<1863:OTACOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilicak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 3758, https://doi.org/10.1016/j.ocemod.2011.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, https://doi.org/10.1175/2007JPO3464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, D. Wu, and B. Qiu, 2014: Enhanced 2-h–8-day oscillations associated with tropical instability waves. J. Phys. Oceanogr., 44, 19081918, https://doi.org/10.1175/JPO-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and A. N. Birnbaum, 2017: As El Niño builds, Pacific warm pool expands, ocean gains more heat. Geophys. Res. Lett., 44, 438445, https://doi.org/10.1002/2016GL071767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., J. M. Gregory, and L. C. Shaffrey, 2015: A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Climate Dyn., 45, 32053226, https://doi.org/10.1007/s00382-015-2534-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004GL020778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., G. Danabasoglu, and P. Gent, 1996: Tracer budgets in the warm water sphere. Tellus, 48A, 179192, https://doi.org/10.3402/tellusa.v48i1.12046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megann, A., and Coauthors, 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 10691092, https://doi.org/10.5194/gmd-7-1069-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. Nash, M. Gregg, and P. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, https://doi.org/10.1038/nature12363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P., and J. Stevenson, 1982: The heat budget of tropical ocean warm-water pools. J. Mar. Res., 40, 465480.

  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 14681487, https://doi.org/10.1175/1520-0485(1999)029<1468:DWMFFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and K. Haines, 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 49534969, https://doi.org/10.1175/2009JCLI2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, K. J., S.-P. Xie, and T. Miyama, 2009: Vertical mixing in the ocean and its impact on the coupled ocean–atmosphere system in the eastern tropical Pacific. J. Climate, 22, 37033719, https://doi.org/10.1175/2009JCLI2702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, https://doi.org/10.1029/2011GL047992.

  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501, https://doi.org/10.1175/2009JPO4103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, https://doi.org/10.1002/2013GL058403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., R. M. Holmes, A. M. Hogg, S. M. Griffies, K. D. Stewart, and M. H. England, 2017: Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Climate Change, 7, 595603, https://doi.org/10.1038/nclimate3335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, K., A. Hogg, S. Griffies, A. Heerdegen, M. Ward, P. Spence, and M. England, 2017: Vertical resolution of baroclinic modes in global ocean models. Ocean Modell., 113, 5065, https://doi.org/10.1016/j.ocemod.2017.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suresh, A., and H. Huynh, 1997: Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys., 136, 8399, https://doi.org/10.1006/jcph.1997.5745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 11031119, https://doi.org/10.1175/JPO2740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., H.-M. Zhang, and M. J. Caruso, 2004: Time-dependent internal energy budgets of the tropical warm water pools. J. Climate, 17, 13981410, https://doi.org/10.1175/1520-0442(2004)017<1398:TIEBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdivieso, M., and Coauthors, 2017: An assessment of air–sea heat fluxes from ocean and coupled reanalyses. Climate Dyn., 49, 9831008, https://doi.org/10.1007/s00382-015-2843-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174, https://doi.org/10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett., 35, L23605, https://doi.org/10.1029/2008GL036138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., S. M. Griffies, and R. J. Stouffer, 2010: Spatial variability of sea level rise in twenty-first century projections. J. Climate, 23, 45854607, https://doi.org/10.1175/2010JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., and L. D. Talley, 1998: Heat and buoyancy budgets and mixing rates in the upper thermocline of the Indian and global oceans. J. Phys. Oceanogr., 28, 19611978, https://doi.org/10.1175/1520-0485(1998)028<1961:HABBAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R.-H. Zhang, 2018: An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical Pacific. Geophys. Res. Lett., 45, 15091517, https://doi.org/10.1002/2017GL076269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., M. H. England, and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, https://doi.org/10.1175/JPO-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., W. P. Sijp, and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, https://doi.org/10.1175/JPO-D-12-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., F. Laliberté, L. R. Mudryk, W. P. Sijp, and A. J. G. Nurser, 2015a: Changes in ocean vertical heat transport with global warming. Geophys. Res. Lett., 42, 49404948, https://doi.org/10.1002/2015GL064156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015b: Maintenance and broadening of the ocean’s salinity distribution by the water cycle. J. Climate, 28, 95509560, https://doi.org/10.1175/JCLI-D-15-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2576 1424 88
PDF Downloads 1027 217 24