Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry

Edward D. Zaron Portland State University, Portland, Oregon

Search for other papers by Edward D. Zaron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A near-global model for the sea surface expression of the baroclinic tide has been developed using exact-repeat mission altimetry. The methodology used differs in detail from other altimetry-based estimates of the open ocean baroclinic tide, but it leads to estimates that are broadly similar to previous results. It may be used for prediction of the baroclinic sea level anomaly at the frequencies of the main diurnal and semidiurnal tides , , , and , as well as the annual modulates of , denoted and . The tidal predictions are validated by computing variance reduction statistics using independent sea surface height data from the CryoSat-2 altimeter mission. Typical midocean baroclinic tidal signals range from a few millimeters to centimeters of elevation, corresponding to subsurface isopycnal displacements of tens of meters; however, in a few regions, larger signals are present, and it is found that the present model can explain more than 13-cm2 variance at some sites. The predicted tides are also validated by comparison with a database of hourly currents inferred from drogued surface drifters. The database is large enough to permit assessment of a simple model for scattering of the low-mode tide. Results indicate a scattering time scale of approximately 1 day, consistent with a priori estimates of time-variable refraction by the mesoscale circulation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0127.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward D. Zaron, ezaron@pdx.edu

Abstract

A near-global model for the sea surface expression of the baroclinic tide has been developed using exact-repeat mission altimetry. The methodology used differs in detail from other altimetry-based estimates of the open ocean baroclinic tide, but it leads to estimates that are broadly similar to previous results. It may be used for prediction of the baroclinic sea level anomaly at the frequencies of the main diurnal and semidiurnal tides , , , and , as well as the annual modulates of , denoted and . The tidal predictions are validated by computing variance reduction statistics using independent sea surface height data from the CryoSat-2 altimeter mission. Typical midocean baroclinic tidal signals range from a few millimeters to centimeters of elevation, corresponding to subsurface isopycnal displacements of tens of meters; however, in a few regions, larger signals are present, and it is found that the present model can explain more than 13-cm2 variance at some sites. The predicted tides are also validated by comparison with a database of hourly currents inferred from drogued surface drifters. The database is large enough to permit assessment of a simple model for scattering of the low-mode tide. Results indicate a scattering time scale of approximately 1 day, consistent with a priori estimates of time-variable refraction by the mesoscale circulation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0127.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward D. Zaron, ezaron@pdx.edu

Supplementary Materials

    • Supplemental Materials (ZIP 5.81 MB)
Save
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, https://doi.org/10.1175/2010JPO4388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, O. B., 1995: Global ocean tides from ERS-1 and T/P altimetry. J. Geophys. Res., 100, 25 24925 259, https://doi.org/10.1029/95JC01389.

  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29A, 307338, https://doi.org/10.1016/0198-0149(82)90098-X.

  • Bordes, G., A. Venaille, S. Joubaud, P. Odier, and T. Dauxois, 2012: Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids, 24, 086602, https://doi.org/10.1063/1.4745880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozdogan, H., 1987: Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370, https://doi.org/10.1007/BF02294361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2016: Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr., 46, 13991419, https://doi.org/10.1175/JPO-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., C. Le Provost, and F. Lyard, 2004: On the statistical stability of the M2 barotropic and baroclinic tidal characteristics from along-track TOPEX/Poseidon satellite altimetry analysis. J. Geophys. Res., 109, C03033, https://doi.org/10.1029/2003JC001873.

    • Search Google Scholar
    • Export Citation
  • Cherniawsky, J. Y., M. G. G. Foreman, W. R. Crawford, and R. F. Henry, 2001: Ocean tides from TOPEX/Poseidon sea level data. J. Atmos. Oceanic Technol., 18, 649664, https://doi.org/10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doodson, A. T., and H. D. Warburg, 1941: Admiralty Manual of Tides. HMSO, 270 pp.

  • DUACS/Aviso Team, 2014: A new version of SSALTO/DUACS products available in April 2014, version 1.1. DUACS/AVISO Rep., 38 pp., https://www.aviso.altimetry.fr/fileadmin/documents/data/duacs/Duacs2014.pdf.

  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, https://doi.org/10.1002/2013JC009293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry: Computing accurate tidal predictions at arbitrary points over the world oceans. University of Washington Applied Physics Laboratory Tech. Rep. APL-UW 1-15, 114 pp., http://www.apl.washington.edu/project/projects/tm_1-15/pdfs/tm_1_15.pdf.

  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, https://doi.org/10.1029/2000JC000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, https://doi.org/10.1029/2003GL017676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, https://doi.org/10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, R. C. Perez, J. M. Lilly, J. J. Early, and A. M. Sykulski, 2016: A global surface drifter data set at hourly resolution. J. Geophys. Res. Oceans, 121, 29372966, https://doi.org/10.1002/2016JC011716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and A. Cazenave, Eds., 2001: Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. International Geophysics Series, Vol. 69, Elsevier, 463 pp.

  • Fu, L.-L., D. Chelton, P.-Y. LeTraon, and R. Morrow, 2010: Eddy dynamics from satellite altimetry. Oceanography, 23 (4), 1425, https://doi.org/10.5670/oceanog.2010.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016: The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Oceanic Technol., 33, 119126, https://doi.org/10.1175/JTECH-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huess, V., and O. B. Andersen, 2001: Seasonal variation in the main tidal constituent from altimetry. Geophys. Res. Lett., 28, 567570, https://doi.org/10.1029/2000GL011921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., R. Lien, and C. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, https://doi.org/10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Johnston, S. T., M. A. Merrifield, and P. E. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, https://doi.org/10.1029/2003JC001844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. C. Tierney, 1997: Global baroclinic tides. Prog. Oceanogr., 40, 163178, https://doi.org/10.1016/S0079-6611(97)00028-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and K. M. Huijts, 2006: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II, 53, 140156, https://doi.org/10.1016/j.dsr2.2005.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Łyszkowicz, A. B., and A. Bernatowicz, 2017: Current state of art of satellite altimetry. Geod. Cartogr., 66, 259270, https://doi.org/10.1515/geocart-2017-0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, https://doi.org/10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, H., 2000: Geodetic Reference System 1980. J. Geod., 74, 128133, https://doi.org/10.1007/s001900050278.

  • Müller, M., J. Cherniawsky, M. G. Foreman, and J.-S. von Storch, 2014: Seasonal variation of the M2 tide. Ocean Dyn., 64, 159177, https://doi.org/10.1007/s10236-013-0679-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and D. R. Watts, 2006: Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36, 2234, https://doi.org/10.1175/JPO2846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picot, N., S. Desai, J. Hausman, and E. Bronner, 2012: Jason-1 products handbook. AVISO Rep., 61 pp., http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j1_gdr.pdf.

  • Picot, N., S. Desai, J. Figa-Saldana, and R. Scharroo, 2014: Jason-2 version ‘D’ geophysical data records: Public release. AVISO Rep., 12 pp., http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/JA2_GDR_D_release_note.pdf.

  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., T. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325, https://doi.org/10.1175/2009JPO4256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1999: A global ocean tide model from TOPEX/Poseidon altimetry: GOT99.2. NASA Tech. Rep. 209478, 58 pp., https://ntrs.nasa.gov/search.jsp?R=19990089548.

  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262, https://doi.org/10.1029/2000GL012447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. A. Byrne, 2010: Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry. Ocean Dyn., 60, 11671176, https://doi.org/10.1007/s10236-010-0316-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharroo, R., E. W. Leuliette, J. L. Lillibridge, D. Byrne, M. C. Naeije, and G. T. Mitchum, 2013: RADS: Consistent multi-mission products. Proc. Symp. on 20 Years of Progress in Radar Altimetry, Venice, Italy, European Space Agency, ESA SP-710.

  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res., 56, 295304, https://doi.org/10.1016/j.dsr.2008.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, B., 2013: Coastal Tides. Institut Oceanographique, 409 pp.

  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and J. D. Nash, 2004: An examination of the radiative and dissipative properties of deep ocean internal tides. Deep-Sea Res., 51, 30293042, https://doi.org/10.1016/j.dsr2.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and W. K. Dewar, 2010: Scattering of gravity waves by potential vorticity in a shallow-water fluid. J. Fluid Mech., 663, 478506, https://doi.org/10.1017/S0022112010003721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherall, P., and Coauthors, 2015: A new digital bathymetric model of the world’s oceans. Earth Space Sci., 2, 331345, https://doi.org/10.1002/2015EA000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., D. Halpern, T. Y. Tang, and S. M. Hwang, 1987: M2 tidal currents in the eastern equatorial Pacific Ocean. J. Geophys. Res., 92, 38213826, https://doi.org/10.1029/JC092iC04p03821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendland, H., 1995: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4, 389396, https://doi.org/10.1007/BF02123482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., L. L. Fu, E. Lindstrom, and M. Srinivasan, 2010: 17 years and counting: Satellite altimetry from research to operations. 2010 IEEE Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 777–780, https://doi.org/10.1109/IGARSS.2010.5652195.

    • Crossref
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, S., 2017: Harmonic generation by nonlinear self-interaction of a single internal wave mode. J. Fluid Mech., 828, 630647, https://doi.org/10.1017/jfm.2017.532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2015: Nonstationary internal tides observed using dual-satellite altimetry. J. Phys. Oceanogr., 45, 22392246, https://doi.org/10.1175/JPO-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2017: Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans, 122, 539554, https://doi.org/10.1002/2016JC012487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2006: Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36, 10191035, https://doi.org/10.1175/JPO2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, https://doi.org/10.1175/JPO-D-12-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2017: Using an altimeter-derived internal tide model to remove tides from in situ data. Geophys. Res. Lett., 44, 42414245, https://doi.org/10.1002/2017GL072950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2018: Aliased tidal variability in mesoscale sea level anomaly maps. J. Atmos. Oceanic Technol., https://doi.org/10.1175/JTECH-D-18-0089.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., C. Chavanne, G. D. Egbert, and P. Flament, 2009: Baroclinic tidal generation in the Kauai Channel inferred from high-frequency radio Doppler current meters. Dyn. Atmos. Oceans, 48, 93120, https://doi.org/10.1016/j.dynatmoce.2009.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2016: Using CryoSat-2 altimeter data to evaluate M2 internal tides observed from multisatellite altimetry. J. Geophys. Res. Oceans, 121, 51645180, https://doi.org/10.1002/2016JC011805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2017: The global mode-1 S2 internal tide. J. Geophys. Res. Oceans, 122, 87948812, https://doi.org/10.1002/2017JC013112.

  • Zhao, Z., and E. A. D’Asaro, 2011: A perfect focus of the internal tide from the Mariana Arc. Geophys. Res. Lett., 38, L14609, https://doi.org/10.1029/2011GL047909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, and J. B. Girton, 2012: Mapping low-mode internal tides from multisatellite altimetry. Oceanography, 25 (2), 4251, https://doi.org/10.5670/oceanog.2012.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3023 1190 61
PDF Downloads 2044 538 28